Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(22): 6658-6664, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38770882

ABSTRACT

Synthetic quantum systems provide a pathway for exploring the physics of complex quantum matter in a programmable fashion. This approach becomes particularly advantageous when it comes to systems that are thermodynamically unfavorable. By sculpting the potential landscape of Cu(111) surfaces with carbon monoxide quantum corrals in a cryogenic scanning tunneling microscope, we created analogue simulators of planar organic molecules, including antiaromatic and non-Kekulé species that are generally reactive or unstable. Spectroscopic imaging of such synthetic molecules reveals close replications of molecular orbitals obtained from ab initio calculations of the organic molecules. We further illustrate the quantitative nature of such analogue simulators by faithful extraction of bond orders and global aromaticity indices, which are otherwise technically daunting using real molecules. Our approach therefore sets the stage for new research frontiers pertaining to the quantum physics and chemistry of designer nanostructures.

2.
ACS Nano ; 18(8): 6438-6444, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363716

ABSTRACT

Lead halide perovskite nanocrystals, such as CsPbBr3, exhibit efficient photoluminescence (PL) up-conversion, also referred to as anti-Stokes photoluminescence (ASPL). This is a phenomenon where irradiating nanocrystals up to 100 meV below gap results in higher energy band edge emission. Most surprising is that ASPL efficiencies approach unity and involve single-photon interactions with multiple phonons. This is unexpected given the statistically disfavored nature of multiple-phonon absorption. Here, we report and rationalize near-unity anti-Stokes photoluminescence efficiencies in CsPbBr3 nanocrystals and attribute them to resonant multiple-phonon absorption by polarons. The theory explains paradoxically large efficiencies for intrinsically disfavored, multiple-phonon-assisted ASPL in nanocrystals. Moreover, the developed microscopic mechanism has immediate and important implications for applications of ASPL toward condensed phase optical refrigeration.

3.
Nano Lett ; 20(12): 8933-8939, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33252230

ABSTRACT

The ability to control the potential landscape in a medium of interacting particles could lead to intriguing collective behavior and innovative functionalities. Here, we utilize spatially reconfigurable magnetic potentials of a pinwheel artificial-spin-ice (ASI) structure to tailor the motion of superconducting vortices. The reconstituted chain structures of the magnetic charges in the pinwheel ASI and the strong interaction between magnetic charges and superconducting vortices allow significant modification of the transport properties of the underlying superconducting thin film, resulting in a reprogrammable resistance state that enables a reversible and switchable vortex Hall effect. Our results highlight an effective and simple method of using ASI as an in situ reconfigurable nanoscale energy landscape to design reprogrammable superconducting electronics, which could also be applied to the in situ control of properties and functionalities in other magnetic particle systems, such as magnetic skyrmions.

4.
Nano Lett ; 20(10): 7382-7388, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32969667

ABSTRACT

Recent experiments by Rainò et al. ( Nature 2018, 563, 671-675) have documented cooperative emission from CsPbBr3 nanocrystal superlattices, exhibiting the hallmarks of low-temperature superradiance. In particular, the optical response is coherent and the radiative decay rate is increased by a factor of 3, relative to that of individual nanocrystals. However, the increase is 6 orders of magnitude smaller than what is theoretically expected from the superradiance of large assemblies, consisting of 106-108 interacting nanocrystals. Here, we develop a theoretical model of superradiance for such systems and show that thermal decoherence is largely responsible for the drastic reduction of the radiative decay rate in nanocrystal superlattices. Our theoretical approach explains the experimental results ( Nature 2018, 563, 671-675), provides insight into the design of small nanocrystal superlattices, and shows a 4 orders of magnitude enhancement in superradiant response. These quantitative predictions pave the path toward observing superradiance at higher temperatures.

6.
Nat Nanotechnol ; 13(7): 560-565, 2018 07.
Article in English | MEDLINE | ID: mdl-29892018

ABSTRACT

Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics1, such as data storage, memory and logic2. However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system3,4. Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure5. The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions6, electrons and holes in two-dimensional materials7,8, and topological insulators9, as well as colloids in soft materials10-13.

7.
Nano Lett ; 17(6): 3902-3906, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28510441

ABSTRACT

We report for the first time the synthesis of large, free-standing, Mo2O2(µ-S)2(Et2dtc)2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.

8.
Nat Commun ; 8: 14521, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28223699

ABSTRACT

Fluorescence intermittency or blinking is observed in nearly all nanoscale fluorophores. It is characterized by universal power-law distributions in on- and off-times as well as 1/f behaviour in corresponding emission power spectral densities. Blinking, previously seen in confined zero- and one-dimensional systems has recently been documented in two-dimensional reduced graphene oxide. Here we show that unexpected blinking during graphene oxide-to-reduced graphene oxide photoreduction is attributed, in large part, to the redistribution of carbon sp2 domains. This reclustering generates fluctuations in the number/size of emissive graphenic nanoclusters wherein multiscale modelling captures essential experimental aspects of reduced graphene oxide's absorption/emission trajectories, while simultaneously connecting them to the underlying photochemistry responsible for graphene oxide's reduction. These simulations thus establish causality between currently unexplained, long timescale emission intermittency in a quantum mechanical fluorophore and identifiable chemical reactions that ultimately lead to switching between on and off states.

9.
Nat Commun ; 7: 12726, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27577091

ABSTRACT

Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

10.
Nano Lett ; 15(7): 4317-21, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26057349

ABSTRACT

We provide, for the first time, direct experimental evidence for heterogeneous blinking in reduced graphene oxide (rGO) during photolysis. The spatially resolved intermittency originates from regions within individual rGO sheets and shows 1/f-like power spectral density. We describe the evolution of rGO blinking using the multiple recombination center (MRC) model that captures common features of nanoscale blinking. Our results illustrate the universal nature of blinking and suggest a common microscopic origin for the effect.

11.
Nano Lett ; 13(2): 402-8, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23272638

ABSTRACT

A variety of optically active nanoscale objects show extremely long correlations in the fluctuations of fluorescence intensity (blinking). Here we performed a systematic study to quantitatively estimate the power spectral density (PSD) of the fluorescence trajectories of colloidal and self-assembled quantum dots (QDs), nanorods (NRs), nanowires (NWs), and organic molecules. We report for the first time a statistically correct method of PSD estimation suitable for these systems. Our method includes a detailed analysis of the confidence intervals. The striking similarity in the spectra of these nanoscale systems, including even a "nonblinking" quantum dot investigated by Wang and collaborators (Nature2009, 459, 685-689), is powerful evidence for the existence of a universal physical mechanism underlying the blinking phenomenon in all of these fluorophores (Frantsuzov et al. Nat. Phys.2008, 4, 519-522). In this paper we show that the features of this universal mechanism can be captured phenomenologically by the multiple recombination center model (MRC) we suggested recently for explaining single colloidal QD intermittency. Within the framework of the MRCs we qualitatively explain all of the important features of fluorescence intensity fluctuations for a broad spectrum of nanoscale emitters.

12.
ACS Nano ; 6(10): 9133-40, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22978316

ABSTRACT

CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.


Subject(s)
Cadmium Compounds/chemistry , Models, Chemical , Nanostructures/chemistry , Selenium Compounds/chemistry , Computer Simulation , Electromagnetic Fields , Materials Testing , Nanostructures/ultrastructure , Particle Size
13.
Nano Lett ; 10(8): 2761-5, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20698587

ABSTRACT

We explain the long-range correlations found by Stefani and his co-workers between blinking times of single colloidal quantum dot emission. Our explanation is based on the multiple recombination center model we recently suggested. The model produces positive correlations between subsequent on--on and off--off times and negative on--off correlations, as observed in the experiment. We also reproduce qualitatively the dependence of correlations between subsequent on--on, on-off, and off--off times on the number of switching events separating them.

14.
Nature ; 435(7038): 71-5, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15875016

ABSTRACT

The continuous need for miniaturization and increase in device speed drives the electronics industry to explore new avenues of information processing. One possibility is to use electron spin to store, manipulate and carry information. All such 'spintronics' applications are faced with formidable challenges in finding fast and efficient ways to create, transport, detect, control and manipulate spin textures and currents. Here we show how most of these operations can be performed in a relatively simple manner in a hybrid system consisting of a superconducting film and a paramagnetic diluted magnetic semiconductor (DMS) quantum well. Our proposal is based on the observation that the inhomogeneous magnetic fields of the superconducting film create local spin and charge textures in the DMS quantum well, leading to a variety of effects such as Bloch oscillations and an unusual quantum Hall effect. We exploit recent progress in manipulating magnetic flux bundles (vortices) in superconductors and show how these can create, manipulate and control the spin textures in DMSs.

15.
Phys Rev Lett ; 90(24): 246804, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12857213

ABSTRACT

We investigate the possibility of charge carrier localization in magnetic semiconductors due to the presence of a highly inhomogeneous external magnetic field. As an example, we study in detail the properties of a magnetic semiconductor-permalloy disk hybrid system. We find that the giant Zeeman response of the magnetic semiconductor in conjunction with the highly nonuniform magnetic field created by the vortex state of a permalloy disk can lead to Zeeman localized states at the interface of the two materials. These trapped states are chiral, with chirality controlled by the orientation of the core magnetization of the permalloy disk. We calculate the energy spectrum and the eigenstates of these Zeeman localized states, and discuss their experimental signatures in spectroscopic probes.

16.
Phys Rev Lett ; 89(4): 047201, 2002 Jul 22.
Article in English | MEDLINE | ID: mdl-12144496

ABSTRACT

Starting from a microscopic description of the exchange interaction in Ga(1-x)Mn(x)As, we derive an effective Mn-Mn interaction. Because of the strong spin-orbit coupling in the valence band, this effective interaction is highly anisotropic and has a spatial structure somewhat similar to dipolar interactions. The corresponding ground state has a finite magnetization but is intrinsically spin disordered even at zero temperature, explaining many features of the experimental data. Our results are relevant for many magnetic semiconductors.

17.
Proc Natl Acad Sci U S A ; 99(8): 5233-6, 2002 Apr 16.
Article in English | MEDLINE | ID: mdl-16578872

ABSTRACT

We report self-consistent calculations of the microscopic electronic structure of the so-called giant vortex states. These multiquantum vortex states, detected by recent magnetization measurements on submicron disks, are qualitatively different from the Abrikosov vortices in the bulk. We find that, in addition to multiple branches of bound states in the core region, the local tunneling density of states exhibits Tomasch oscillations caused by the single-particle interference arising from quantum confinement. These features should be directly observable by scanning tunneling spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...