Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(19): 191403, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804921

ABSTRACT

The recently reported observation of VFTS 243 is the first example of a massive black-hole binary system with negligible binary interaction following black-hole formation. The black-hole mass (≈10M_{⊙}) and near-circular orbit (e≈0.02) of VFTS 243 suggest that the progenitor star experienced complete collapse, with energy-momentum being lost predominantly through neutrinos. VFTS 243 enables us to constrain the natal kick and neutrino-emission asymmetry during black-hole formation. At 68% confidence level, the natal kick velocity (mass decrement) is ≲10 km/s (≲1.0M_{⊙}), with a full probability distribution that peaks when ≈0.3M_{⊙} were ejected, presumably in neutrinos, and the black hole experienced a natal kick of 4 km/s. The neutrino-emission asymmetry is ≲4%, with best fit values of ∼0-0.2%. Such a small neutrino natal kick accompanying black-hole formation is in agreement with theoretical predictions.

2.
Phys Rev Lett ; 131(6): 061401, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625055

ABSTRACT

We present the first simulations of core-collapse supernovae in axial symmetry with feedback from fast neutrino flavor conversion (FFC). Our schematic treatment of FFCs assumes instantaneous flavor equilibration under the constraint of lepton-number conservation individually for each flavor. Systematically varying the spatial domain where FFCs are assumed to occur, we find that they facilitate SN explosions in low-mass (9-12M_{⊙}) progenitors that otherwise explode with longer time delays, whereas FFCs weaken the tendency to explode of higher-mass (around 20M_{⊙}) progenitors.

3.
Phys Rev Lett ; 128(22): 221103, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35714248

ABSTRACT

The hot and dense core formed in the collapse of a massive star is a powerful source of hypothetical feebly interacting particles such as sterile neutrinos, dark photons, axionlike particles (ALPs), and others. Radiative decays such as a→2γ deposit this energy in the surrounding material if the mean free path is less than the radius of the progenitor star. For the first time, we use a supernova (SN) population with particularly low explosion energies as the most sensitive calorimeters to constrain this possibility. These SNe are observationally identified as low-luminosity events with low ejecta velocities and low masses of ejected ^{56}Ni. Their low energies limit the energy deposition from particle decays to less than about 0.1 B, where 1 B(bethe)=10^{51} erg. For 1-500 MeV-mass ALPs, this generic argument excludes ALP-photon couplings G_{aγγ} in the 10^{-10}-10^{-8} GeV^{-1} range.

4.
Phys Rev Lett ; 126(18): 189901, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34018808

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.125.051104.

5.
Phys Rev Lett ; 125(5): 051104, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32794860

ABSTRACT

The high temperature and electron degeneracy attained during a supernova allow for the formation of a large muon abundance within the core of the resulting protoneutron star. If new pseudoscalar degrees of freedom have large couplings to the muon, they can be produced by this muon abundance and contribute to the cooling of the star. By generating the largest collection of supernova simulations with muons to date, we show that observations of the cooling rate of SN 1987A place strong constraints on the coupling of axionlike particles to muons, limiting the coupling to g_{aµ}<10^{-8.1} GeV^{-1}.

6.
Sci Adv ; 6(11): eaay2732, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32201719

ABSTRACT

The release of spin-down energy by a magnetar is a promising scenario to power several classes of extreme explosive transients. However, it lacks a firm basis because magnetar formation still represents a theoretical challenge. Using the first three-dimensional simulations of a convective dynamo based on a protoneutron star interior model, we demonstrate that the required dipolar magnetic field can be consistently generated for sufficiently fast rotation rates. The dynamo instability saturates in the magnetostrophic regime with the magnetic energy exceeding the kinetic energy by a factor of up to 10. Our results are compatible with the observational constraints on galactic magnetar field strength and provide strong theoretical support for millisecond protomagnetar models of gamma-ray burst and superluminous supernova central engines.

7.
Philos Trans A Math Phys Eng Sci ; 375(2105)2017 Oct 28.
Article in English | MEDLINE | ID: mdl-28923995

ABSTRACT

Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting 'Bridging the gap: from massive stars to supernovae' at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

8.
Phys Rev Lett ; 111(12): 121104, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093243

ABSTRACT

The first full-scale three-dimensional core-collapse supernova (SN) simulations with sophisticated neutrino transport show pronounced effects of the standing accretion shock instability (SASI) for two high-mass progenitors (20 and 27 M([Symbol: see text])). In a low-mass progenitor (11.2 M([Symbol: see text])), large-scale convection is the dominant nonradial hydrodynamic instability in the postshock accretion layer. The SASI-associated modulation of the neutrino signal (80 Hz in our two examples) will be clearly detectable in IceCube or the future Hyper-Kamiokande detector, depending on progenitor properties, distance, and observer location relative to the main SASI sloshing direction. The neutrino signal from the next galactic SN can, therefore, diagnose the nature of the hydrodynamic instability.

9.
Phys Rev Lett ; 108(6): 061101, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401048

ABSTRACT

Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M[symbol: see text] spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.

10.
Sci Am ; 295(4): 42-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16989479
SELECTION OF CITATIONS
SEARCH DETAIL
...