Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562698

ABSTRACT

Antibody-antigen specificity is engendered and refined through a number of complex B cell processes, including germline gene recombination and somatic hypermutation. Here, we present an AI-based technology for de novo generation of antigen-specific antibody CDRH3 sequences using germline-based templates, and validate this technology through the generation of antibodies against SARS-CoV-2. AI-based processes that mimic the outcome, but bypass the complexity of natural antibody generation, can be efficient and effective alternatives to traditional experimental approaches for antibody discovery.

2.
J Immunol ; 212(9): 1450-1456, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38488511

ABSTRACT

Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.


Subject(s)
Antibodies, Neutralizing , Parainfluenza Virus 3, Human , Humans , Viral Fusion Proteins/genetics , Epitopes , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...