Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 35(5): 109081, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33951427

ABSTRACT

Conscious access to sensory information is likely gated at an intermediate site between primary sensory and transmodal association cortices, but the structure responsible remains unknown. We perform functional neuroimaging to determine the neural correlates of conscious access using a volitional mental imagery task, a report paradigm not confounded by motor behavior. Titrating propofol to loss of behavioral responsiveness in healthy volunteers creates dysfunction of the anterior insular cortex (AIC) in association with an impairment of dynamic transitions of default-mode and dorsal attention networks. Candidate subcortical regions mediating sensory gating or arousal (thalamus, basal forebrain) fail to show this association. The gating role of the AIC is consistent with findings in awake participants, whose conscious access is predicted by pre-stimulus AIC activity near perceptual threshold. These data support the hypothesis that AIC, situated at an intermediate position of the cortical hierarchy, regulates brain network transitions that gate conscious access.


Subject(s)
Brain/physiology , Consciousness/physiology , Insular Cortex/pathology , Healthy Volunteers , Humans
2.
Neuroimage ; 236: 118042, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33848623

ABSTRACT

Anesthetics are known to disrupt neural interactions in cortical and subcortical brain circuits. While the effect of anesthetic drugs on consciousness is reversible, the neural mechanism mediating induction and recovery may be different. Insight into these distinct mechanisms can be gained from a systematic comparison of neural dynamics during slow induction of and emergence from anesthesia. To this end, we used functional magnetic resonance imaging (fMRI) data obtained in healthy volunteers before, during, and after the administration of propofol at incrementally adjusted target concentrations. We analyzed functional connectivity of corticocortical and subcorticocortical networks and the temporal autocorrelation of fMRI signal as an index of neural processing timescales. We found that en route to unconsciousness, temporal autocorrelation across the entire brain gradually increased, whereas functional connectivity gradually decreased. In contrast, regaining consciousness was associated with an abrupt restoration of cortical but not subcortical temporal autocorrelation and an abrupt boost of subcorticocortical functional connectivity. Pharmacokinetic effects could not account for the difference in neural dynamics between induction and emergence. We conclude that the induction and recovery phases of anesthesia follow asymmetric neural dynamics. A rapid increase in the speed of cortical neural processing and subcorticocortical neural interactions may be a mechanism that reboots consciousness.


Subject(s)
Anesthesia , Anesthetics, Intravenous/pharmacology , Connectome , Consciousness Disorders/chemically induced , Consciousness Disorders/physiopathology , Consciousness , Nerve Net , Propofol/pharmacology , Adult , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacokinetics , Consciousness/drug effects , Consciousness/physiology , Consciousness Disorders/diagnostic imaging , Female , Humans , Imagination/drug effects , Imagination/physiology , Magnetic Resonance Imaging , Male , Motor Activity/drug effects , Motor Activity/physiology , Nerve Net/diagnostic imaging , Nerve Net/drug effects , Nerve Net/physiology , Propofol/administration & dosage , Propofol/pharmacokinetics , Young Adult
3.
Sci Rep ; 8(1): 13195, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30181567

ABSTRACT

Detecting covert consciousness in behaviorally unresponsive patients by brain imaging is of great interest, but a reproducible model and evidence from independent sources is still lacking. Here we demonstrate the possibility of using general anesthetics in a within-subjects study design to test methods or statistical paradigms of assessing covert consciousness. Using noninvasive neuroimaging in healthy volunteers, we identified a healthy study participant who was able to exhibit the specific fMRI signatures of volitional mental imagery while behaviorally unresponsive due to sedation with propofol. Our findings reveal a novel model that may accelerate the development of new approaches to reproducibly detect covert consciousness, which is difficult to achieve in patients with heterogeneous and sometimes clinically unstable neuropathology.


Subject(s)
Brain/drug effects , Brain/physiology , Consciousness/drug effects , Hypnotics and Sedatives/pharmacology , Propofol/pharmacology , Adult , Anesthetics, Intravenous/pharmacology , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...