Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 375(6587): 1422-1426, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35324292

ABSTRACT

Colloidal nanocrystals of metals, semiconductors, and other functional materials can self-assemble into long-range ordered crystalline and quasicrystalline phases, but insulating organic surface ligands prevent the development of collective electronic states in ordered nanocrystal assemblies. We reversibly self-assembled colloidal nanocrystals of gold, platinum, nickel, lead sulfide, and lead selenide with conductive inorganic ligands into supercrystals exhibiting optical and electronic properties consistent with strong electronic coupling between the constituent nanocrystals. The phase behavior of charge-stabilized nanocrystals can be rationalized and navigated with phase diagrams computed for particles interacting through short-range attractive potentials. By finely tuning interparticle interactions, the assembly was directed either through one-step nucleation or nonclassical two-step nucleation pathways. In the latter case, the nucleation was preceded by the formation of two metastable colloidal fluids.

2.
J Appl Crystallogr ; 53(Pt 3): 699-709, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32684885

ABSTRACT

sasPDF, a method for characterizing the structure of nanoparticle assemblies (NPAs), is presented. The method is an extension of the atomic pair distribution function (PDF) analysis to the small-angle scattering (SAS) regime. The PDFgetS3 software package for computing the PDF from SAS data is also presented. An application of the sasPDF method to characterize structures of representative NPA samples with different levels of structural order is then demonstrated. The sasPDF method quantitatively yields information such as structure, disorder and crystallite sizes of ordered NPA samples. The method was also used to successfully model the data from a disordered NPA sample. The sasPDF method offers the possibility of more quantitative characterizations of NPA structures for a wide class of samples.

3.
ACS Nano ; 14(4): 4792-4804, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32208676

ABSTRACT

Metal nanocrystals exhibit important optoelectronic and photocatalytic functionalities in response to light. These dynamic energy conversion processes have been commonly studied by transient optical probes to date, but an understanding of the atomistic response following photoexcitation has remained elusive. Here, we use femtosecond resolution electron diffraction to investigate transient lattice responses in optically excited colloidal gold nanocrystals, revealing the effects of nanocrystal size and surface ligands on the electron-phonon coupling and thermal relaxation dynamics. First, we uncover a strong size effect on the electron-phonon coupling, which arises from reduced dielectric screening at the nanocrystal surfaces and prevails independent of the optical excitation mechanism (i.e., inter- and intraband). Second, we find that surface ligands act as a tuning parameter for hot carrier cooling. Particularly, gold nanocrystals with thiol-based ligands show significantly slower carrier cooling as compared to amine-based ligands under intraband optical excitation due to electronic coupling at the nanocrystal/ligand interfaces. Finally, we spatiotemporally resolve thermal transport and heat dissipation in photoexcited nanocrystal films by combining electron diffraction with stroboscopic elastic scattering microscopy. Taken together, we resolve the distinct thermal relaxation time scales ranging from 1 ps to 100 ns associated with the multiple interfaces through which heat flows at the nanoscale. Our findings provide insights into optimization of gold nanocrystals and their thin films for photocatalysis and thermoelectric applications.

4.
J Am Chem Soc ; 140(46): 15791-15803, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30285448

ABSTRACT

The ensemble emission spectra of colloidal InP quantum dots are broader than achievable spectra of cadmium- and lead-based quantum dots, despite similar single-particle line widths and significant efforts invested in the improvement of synthetic protocols. We seek to explain the origin of persistently broad ensemble emission spectra of colloidal InP quantum dots by investigating the nature of the electronic states responsible for luminescence. We identify a correlation between red-shifted emission spectra and anomalous broadening of the excitation spectra of luminescent InP colloids, suggesting a trap-associated emission pathway in highly emissive core-shell quantum dots. Time-resolved pump-probe experiments find that electrons are largely untrapped on photoluminescence relevant time scales pointing to emission from recombination of localized holes with free electrons. Two-dimensional electronic spectroscopy on InP quantum dots reveals multiple emissive states and increased electron-phonon coupling associated with hole localization. These localized hole states near the valence band edge are hypothesized to arise from incomplete surface passivation and structural disorder associated with lattice defects. We confirm the presence and effect of lattice disorder by X-ray absorption spectroscopy and Raman scattering measurements. Participation of localized electronic states that are associated with various classes of lattice defects gives rise to phonon-coupled defect related emission. These findings explain the origins of the persistently broad emission spectra of colloidal InP quantum dots and suggest future strategies to narrow ensemble emission lines comparable to what is observed for cadmium-based materials.

5.
ACS Nano ; 12(9): 9397-9404, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30125488

ABSTRACT

HgTe colloidal quantum dots (QDs) are of interest because quantum confinement of semimetallic bulk HgTe allows one to synthetically control the bandgap throughout the infrared. Here, we synthesize highly monodisperse HgTe QDs and tune their doping both chemically and electrochemically. The monodispersity of the QDs was evaluated using small-angle X-ray scattering (SAXS) and suggests a diameter distribution of ∼10% across multiple batches of different sizes. Electron-doped HgTe QDs display an intraband absorbance and bleaching of the first two excitonic features. We see splitting of the intraband peaks corresponding to electronic transitions from the occupied 1Se state to a series of nondegenerate 1Pe states. Spectroelectrochemical studies reveal that the degree of splitting and relative intensity of the intraband features remain constant across doping levels up to two electrons per QD. Theoretical modeling suggests that the splitting of the 1Pe level arises from spin-orbit coupling and reduced QD symmetry. The fine structure of the intraband transitions is observed in the ensemble studies due to the size uniformity of the as-synthesized QDs and strong spin-orbit coupling inherent to HgTe.

6.
Nat Nanotechnol ; 13(9): 841-848, 2018 09.
Article in English | MEDLINE | ID: mdl-30013216

ABSTRACT

Semiconducting nanomaterials synthesized using wet chemical techniques play an important role in emerging optoelectronic and photonic technologies. Controlling the surface chemistry of the nano building blocks and their interfaces with ligands is one of the outstanding challenges for the rational design of these systems. We present an integrated theoretical and experimental approach to characterize, at the atomistic level, buried interfaces in solids of InAs nanoparticles capped with Sn2S64- ligands. These prototypical nanocomposites are known for their promising transport properties and unusual negative photoconductivity. We found that inorganic ligands dissociate on InAs to form a surface passivation layer. A nanocomposite with unique electronic and transport properties is formed, that exhibits type II heterojunctions favourable for exciton dissociation. We identified how the matrix density, sulfur content and specific defects may be designed to attain desirable electronic and transport properties, and we explain the origin of the measured negative photoconductivity of the nanocrystalline solids.

7.
J Am Chem Soc ; 139(9): 3368-3377, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28145701

ABSTRACT

This work investigates the structure and properties of soluble chalcogenidocadmates, a molecular form of cadmium chalcogenides with unprecedented one-dimensional bonding motifs. The single crystal X-ray structure reveals that sodium selenocadmate consists of infinite one-dimensional wires of (Cd2Se3)n2n- charge balanced by Na+ and stabilized by coordinating solvent molecules. Exchanging the sodium cation with tetraethylammonium or didodecyldimethylammonium expands the versatility of selenocadmate by improving its solubility in a variety of polar and nonpolar solvents without changing the anion structure and properties. The introduction of a micelle-forming cationic surfactant allows for the templating of selenocadmate, or the analogous telluride species, to create ordered organic-inorganic hybrid CdSe or CdTe mesostructures. Finally, the interaction of selenocadmate "wires" with Cd2+ ions creates an unprecedented gel-like form of stoichiometric CdSe. We also demonstrate that these low-dimensional CdSe species show characteristic semiconductor behavior, and can be used in photodetectors and field-effect transistors.

8.
Nano Lett ; 17(3): 2094-2101, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28191964

ABSTRACT

GaAs is one of the most important semiconductors. However, colloidal GaAs nanocrystals remain largely unexplored because of the difficulties with their synthesis. Traditional synthetic routes either fail to produce pure GaAs phase or result in materials whose optical properties are very different from the behavior expected for quantum dots of direct-gap semiconductors. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS, transient absorption, and EPR spectroscopies, we conclude that unusual optical properties of colloidal GaAs NCs can be related to the presence of Ga vacancies and lattice disorder. These defects do not manifest themselves in TEM images and powder X-ray diffraction patterns but are responsible for the lack of absorption features even in apparently crystalline GaAs nanoparticles. We introduce a novel molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.

9.
J Phys Chem Lett ; 4(2): 280-4, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-26283435

ABSTRACT

We use photoinduced absorption (PIA) spectroscopy to investigate pathways for photocurrent generation in hybrid organic/inorganic quantum dot bulk heterojunction solar cells. We study blends of the conjugated polymer poly(2,3-bis(2-(hexyldecyl)quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)dithieno[3,2-b:2',3'-d]pyrrole) (PDTPQx-HD) with PbS quantum dots and find that positively charged polarons are formed on the conjugated polymer following selective photoexcitation of the PbS quantum dots. This result provides a direct spectroscopic fingerprint demonstrating that photoinduced hole transfer occurs from the photoexcited quantum dots to the host polymer. We compute the relative yields of long-lived holes following photoexcitation of both the polymer and quantum dot phases and estimate that more long-lived polarons are produced per photon absorbed by the polymer phase than by the quantum dot phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...