Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 11: 1073581, 2023.
Article in English | MEDLINE | ID: mdl-36860399

ABSTRACT

One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated, it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan the best combination of non-pharmaceutical interventions and to change them over time. We developed a hybrid machine-learning epidemiological model to forecast the infection trends, aggregated the socio-economic costs from the literature and expert knowledge, and used a multi-objective optimization algorithm to find and evaluate various intervention plans. The framework is modular and easily adjustable to a real-world situation, it is trained and tested on data collected from almost all countries in the world, and its proposed intervention plans generally outperform those used in real life in terms of both the number of infections and intervention costs.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Algorithms , Machine Learning
2.
Sensors (Basel) ; 22(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35632022

ABSTRACT

From 2018 to 2021, the Sussex-Huawei Locomotion-Transportation Recognition Challenge presented different scenarios in which participants were tasked with recognizing eight different modes of locomotion and transportation using sensor data from smartphones. In 2019, the main challenge was using sensor data from one location to recognize activities with sensors in another location, while in the following year, the main challenge was using the sensor data of one person to recognize the activities of other persons. We use these two challenge scenarios as a framework in which to analyze the effectiveness of different components of a machine-learning pipeline for activity recognition. We show that: (i) selecting an appropriate (location-specific) portion of the available data for training can improve the F1 score by up to 10 percentage points (p. p.) compared to a more naive approach, (ii) separate models for human locomotion and for transportation in vehicles can yield an increase of roughly 1 p. p., (iii) using semi-supervised learning can, again, yield an increase of roughly 1 p. p., and (iv) temporal smoothing of predictions with Hidden Markov models, when applicable, can bring an improvement of almost 10 p. p. Our experiments also indicate that the usefulness of advanced feature selection techniques and clustering to create person-specific models is inconclusive and should be explored separately in each use-case.


Subject(s)
Algorithms , Supervised Machine Learning , Humans , Locomotion , Machine Learning , Smartphone
3.
Article in English | MEDLINE | ID: mdl-34201618

ABSTRACT

The COVID-19 pandemic affected the whole world, but not all countries were impacted equally. This opens the question of what factors can explain the initial faster spread in some countries compared to others. Many such factors are overshadowed by the effect of the countermeasures, so we studied the early phases of the infection when countermeasures had not yet taken place. We collected the most diverse dataset of potentially relevant factors and infection metrics to date for this task. Using it, we show the importance of different factors and factor categories as determined by both statistical methods and machine learning (ML) feature selection (FS) approaches. Factors related to culture (e.g., individualism, openness), development, and travel proved the most important. A more thorough factor analysis was then made using a novel rule discovery algorithm. We also show how interconnected these factors are and caution against relying on ML analysis in isolation. Importantly, we explore potential pitfalls found in the methodology of similar work and demonstrate their impact on COVID-19 data analysis. Our best models using the decision tree classifier can predict the infection class with roughly 80% accuracy.


Subject(s)
COVID-19 , Algorithms , Humans , Machine Learning , Pandemics , SARS-CoV-2
4.
Sensors (Basel) ; 21(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498804

ABSTRACT

Context recognition using wearable devices is a mature research area, but one of the biggest issues it faces is the high energy consumption of the device that is sensing and processing the data. In this work we propose three different methods for optimizing its energy use. We also show how to combine all three methods to further increase the energy savings. The methods work by adapting system settings (sensors used, sampling frequency, duty cycling, etc.) to both the detected context and directly to the sensor data. This is done by mathematically modeling the influence of different system settings and using multiobjective optimization to find the best ones. The proposed methodology is tested on four different context-recognition tasks where we show that it can generate accurate energy-efficient solutions-in one case reducing energy consumption by 95% in exchange for only four percentage points of accuracy. We also show that the method is general, requires next to no expert knowledge about the domain being optimized, and that it outperforms two approaches from the related work.

5.
Sensors (Basel) ; 18(1)2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29286301

ABSTRACT

The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

6.
J Med Syst ; 40(12): 256, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27722975

ABSTRACT

Diabetes is a disease that has to be managed through appropriate lifestyle. Technology can help with this, particularly when it is designed so that it does not impose an additional burden on the patient. This paper presents an approach that combines machine-learning and symbolic reasoning to recognise high-level lifestyle activities using sensor data obtained primarily from the patient's smartphone. We compare five methods for machine-learning which differ in the amount of manually labelled data by the user, to investigate the trade-off between the labelling effort and recognition accuracy. In an evaluation on real-life data, the highest accuracy of 83.4 % was achieved by the MCAT method, which is capable of gradually adapting to each user.


Subject(s)
Accelerometry/instrumentation , Diabetes Mellitus/physiopathology , Machine Learning , Monitoring, Ambulatory/methods , Motor Activity/physiology , Smartphone , Algorithms , Electrocardiography , Geographic Information Systems , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...