Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Transl Med ; 71(2): 103393, 2023.
Article in English | MEDLINE | ID: mdl-37163885

ABSTRACT

Human mesenchymal stem cells (hMSCs) are multipotent cells and an attractive therapeutic agent in regenerative medicine and intensive clinical research. Despite the great potential, the limitation that needs to be overcome is the necessity of ex vivo expansion because of insufficient number of hMSCs presented within adult organs and the high doses required for a transplantation. As a result, numerous research studies aim to provide novel expansion methods in order to achieve appropriate numbers of cells with preserved therapeutic quality. Bioreactor-based cell expansion provide high-level production of hMSCs in accordance with good manufacturing practice (GMP) and quality standards. This review summarizes current knowledge about the hMSCs manufacturing platforms with a main focus to the application of bioreactors for large-scale production of GMP-grade hMSCs.


Subject(s)
Cell Culture Techniques , Mesenchymal Stem Cells , Adult , Humans , Cell Culture Techniques/methods , Bioreactors , Cells, Cultured , Cell Proliferation
2.
Turk J Pediatr ; 65(6): 1018-1024, 2023.
Article in English | MEDLINE | ID: mdl-38204316

ABSTRACT

BACKGROUND: Combined oxidative phosphorylation deficiency-1 (COXPD1) resulting from a mutation in the G elongation factor mitochondrial 1 (GFM1) gene is an autosomal recessive multisystem disorder arising from a defect in the mitochondrial oxidative phosphorylation system. Death usually appears in the first weeks or years of lifespan. CASE: We report a male patient with ventriculomegaly diagnosed in the 8th month of pregnancy. The delivery was done by caesarean section and respiratory failure occurred immediately after birth. Hypoglycemia, lactic acidosis, elevated gamma-glutamyl transferase and hepatomegaly were confirmed. The brain MRI detected hypoplasia of the cerebellar hemispheres, dilated lateral ventricles, and markedly immature brain parenchyma. Epilepsy had been present since the third month. At 5 months of age, neurological follow-up showed his head circumference to be 37 cm, with plagiocephaly, a low hairline, a short neck, axial hypotonia and he did not adopt any developmental milestones. A genetic mutation, a missense variant in the GFM1 gene, was confirmed: c.748C > T (p.Arg250Trp) was homozygous in the GFM1 gene. CONCLUSIONS: To the best of our knowledge, 28 cases of COXPD1 disease caused by mutations in the GFM1 gene have been described in the literature. COXPD1 should be considered due to symptoms and signs which begin during intrauterine life or at birth. Signs of impaired energy metabolism should indicate that the disease is in the group of metabolic encephalopathies.


Subject(s)
Hepatic Encephalopathy , Metabolism, Inborn Errors , Mitochondrial Diseases , Female , Humans , Infant, Newborn , Male , Pregnancy , Cesarean Section , Mitochondrial Proteins , Mutation , Peptide Elongation Factor G , Serbia
3.
Adv Exp Med Biol ; 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35389200

ABSTRACT

Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.

4.
Front Cell Dev Biol ; 9: 709183, 2021.
Article in English | MEDLINE | ID: mdl-34540831

ABSTRACT

For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.

5.
Theranostics ; 9(20): 5976-6001, 2019.
Article in English | MEDLINE | ID: mdl-31534532

ABSTRACT

Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Cisplatin/toxicity , Galectin 3/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Toll-Like Receptor 2/metabolism , Acute Kidney Injury/genetics , Animals , Cells, Cultured , Flow Cytometry , Galectin 3/genetics , Immunohistochemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/genetics , Male , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , T-Lymphocytes, Regulatory/metabolism , Toll-Like Receptor 2/genetics
6.
Adv Exp Med Biol ; 1084: 187-206, 2019.
Article in English | MEDLINE | ID: mdl-31175638

ABSTRACT

Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.


Subject(s)
Mesenchymal Stem Cells , Stem Cell Factor , Anti-Inflammatory Agents/pharmacology , Culture Media, Conditioned , Immunomodulation/drug effects , Immunosuppressive Agents/pharmacology , Mesenchymal Stem Cells/chemistry , Stem Cell Factor/chemistry , Stem Cell Factor/pharmacology
7.
Stem Cells Int ; 2019: 4236973, 2019.
Article in English | MEDLINE | ID: mdl-31191672

ABSTRACT

During acute or chronic lung injury, inappropriate immune response and/or aberrant repair process causes irreversible damage in lung tissue and most usually results in the development of fibrosis followed by decline in lung function. Inhaled corticosteroids and other anti-inflammatory drugs are very effective in patients with inflammatory lung disorders, but their long-term use is associated with severe side effects. Accordingly, new therapeutic agents that will attenuate ongoing inflammation and, at the same time, promote regeneration of injured alveolar epithelial cells are urgently needed. Mesenchymal stem cells (MSCs) are able to modulate proliferation, activation, and effector function of all immune cells that play an important role in the pathogenesis of acute and chronic inflammatory lung diseases. In addition to the suppression of lung-infiltrated immune cells, MSCs have potential to differentiate into alveolar epithelial cells in vitro and, accordingly, represent new players in cell-based therapy of inflammatory lung disorders. In this review article, we described molecular mechanisms involved in MSC-based therapy of acute and chronic pulmonary diseases and emphasized current knowledge and future perspectives related to the therapeutic application of MSCs in patients suffering from acute respiratory distress syndrome, pneumonia, asthma, chronic obstructive pulmonary diseases, and idiopathic pulmonary fibrosis.

8.
J Biomed Sci ; 26(1): 25, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30866950

ABSTRACT

BACKGROUND: Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents. However, its clinical use is limited due to the severe side effects, including nephrotoxicity and acute kidney injury (AKI) which develop due to renal accumulation and biotransformation of CDDP. The alleviation or prevention of CDDP-caused nephrotoxicity is currently accomplished by hydration, magnesium supplementation or mannitol-induced forced diuresis which is considered for high-dose CDDP-treated patients. However, mannitol treatment causes over-diuresis and consequent dehydration in CDDP-treated patients, indicating an urgent need for the clinical use of safe and efficacious renoprotective drug as an additive therapy for high dose CDDP-treated patients. MAIN BODY: In this review article we describe in detail signaling pathways involved in CDDP-induced apoptosis of renal tubular cells, oxidative stress and inflammatory response in injured kidneys in order to pave the way for the design of new therapeutic approaches that can minimize CDDP-induced nephrotoxicity. Most of these molecular pathways are, at the same time, crucially involved in cytotoxic activity of CDDP against tumor cells and potential alterations in their function might mitigate CDDP-induced anti-tumor effects. CONCLUSION: Despite the fact that many molecules were designated as potential therapeutic targets for renoprotection against CDDP, modulation of CDDP-induced nephrotoxicity still represents a balance on the knife edge between renoprotection and tumor toxicity.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , Epithelial Cells/drug effects , Kidney/drug effects , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Epithelial Cells/immunology , Epithelial Cells/physiology , Humans , Inflammation/chemically induced , Mice , Oxidative Stress/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...