Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(40): 14879-14888, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37756255

ABSTRACT

Detection of small molecule metabolites (SMM), particularly those involved in energy metabolism using MALDI-mass spectrometry imaging (MSI), is challenging due to factors including ion suppression from other analytes present (e.g., proteins and lipids). One potential solution to enhance SMM detection is to remove analytes that cause ion suppression from tissue sections before matrix deposition through solvent washes. Here, we systematically investigated solvent treatment conditions to improve SMM signal and preserve metabolite localization. Washing with acidic methanol significantly enhances the detection of phosphate-containing metabolites involved in energy metabolism. The improved detection is due to removing lipids and highly polar metabolites that cause ion suppression and denaturing proteins that release bound phosphate-containing metabolites. Stable isotope infusions of [13C6]nicotinamide coupled to MALDI-MSI ("Iso-imaging") in the kidney reveal patterns that indicate blood vessels, medulla, outer stripe, and cortex. We also observed different ATP:ADP raw signals across mouse kidney regions, consistent with regional differences in glucose metabolism favoring either gluconeogenesis or glycolysis. In mouse muscle, Iso-imaging using [13C6]glucose shows high glycolytic flux from infused circulating glucose in type 1 and 2a fibers (soleus) and relatively lower glycolytic flux in type 2b fiber type (gastrocnemius). Thus, improved detection of phosphate-containing metabolites due to acidic methanol treatment combined with isotope tracing provides an improved way to probe energy metabolism with spatial resolution in vivo.


Subject(s)
Glycolysis , Methanol , Mice , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Glucose , Lipids , Solvents , Isotopes , Phosphates , Lasers
2.
Dis Model Mech ; 16(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37401371

ABSTRACT

Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.


Subject(s)
Iron Overload , Proteomics , Mice , Animals , Oxidative Stress , Lysosomes/metabolism , Iron/metabolism , Iron Overload/metabolism , Iron Overload/pathology , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigment Epithelium/metabolism
3.
Proc Natl Acad Sci U S A ; 120(21): e2301215120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186827

ABSTRACT

Plasma metabolite concentrations and labeling enrichments are common measures of organismal metabolism. In mice, blood is often collected by tail snip sampling. Here, we systematically examined the effect of such sampling, relative to gold-standard sampling from an in-dwelling arterial catheter, on plasma metabolomics and stable isotope tracing. We find marked differences between the arterial and tail circulating metabolome, which arise from two major factors: handling stress and sampling site, whose effects were deconvoluted by taking a second arterial sample immediately after tail snip. Pyruvate and lactate were the most stress-sensitive plasma metabolites, rising ~14 and ~5-fold. Both acute handling stress and adrenergic agonists induce extensive, immediate production of lactate, and modest production of many other circulating metabolites, and we provide a reference set of mouse circulatory turnover fluxes with noninvasive arterial sampling to avoid such artifacts. Even in the absence of stress, lactate remains the highest flux circulating metabolite on a molar basis, and most glucose flux into the TCA cycle in fasted mice flows through circulating lactate. Thus, lactate is both a central player in unstressed mammalian metabolism and strongly produced in response to acute stress.


Subject(s)
Glucose , Metabolomics , Animals , Mice , Glucose/metabolism , Citric Acid Cycle , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Carbon Isotopes/metabolism , Isotope Labeling , Mammals/metabolism
4.
Nature ; 614(7947): 349-357, 2023 02.
Article in English | MEDLINE | ID: mdl-36725930

ABSTRACT

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Subject(s)
Adenosine Triphosphate , Breast Neoplasms , Citric Acid Cycle , Deceleration , Lung Neoplasms , Neoplasm Metastasis , Pancreatic Neoplasms , Animals , Mice , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Citric Acid Cycle/physiology , Energy Metabolism , Glycolysis , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Organ Specificity , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Biosynthesis
5.
Cell Metab ; 34(12): 1947-1959.e5, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476934

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome of mice. We find that dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut. Instead, circulating host nicotinamide enters the gut lumen and supports microbial NAD synthesis. The microbiome converts host-derived nicotinamide into nicotinic acid, which is used for NAD synthesis in host tissues and maintains circulating nicotinic acid levels even in the absence of dietary consumption. Moreover, the main route from oral nicotinamide riboside, a widely used nutraceutical, to host NAD is via conversion into nicotinic acid by the gut microbiome. Thus, we establish the capacity for circulating host micronutrients to feed the gut microbiome, and in turn be transformed in a manner that enhances host metabolic flexibility.


Subject(s)
NAD , Niacin , Mice , Animals , Niacinamide/pharmacology , Mammals
6.
Cancer Res ; 82(19): 3486-3498, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35916672

ABSTRACT

High-dose ascorbate (vitamin C) has shown promising anticancer activity. Two redox mechanisms have been proposed: hydrogen peroxide generation by ascorbate itself or glutathione depletion by dehydroascorbate (formed by ascorbate oxidation). Here we show that the metabolic effects and cytotoxicity of high-dose ascorbate in vitro result from hydrogen peroxide independently of dehydroascorbate. These effects were suppressed by selenium through antioxidant selenoenzymes including glutathione peroxidase 1 (GPX1) but not the classic ferroptosis-inhibiting selenoenzyme GPX4. Selenium-mediated protection from ascorbate was powered by NADPH from the pentose phosphate pathway. In vivo, dietary selenium deficiency resulted in significant enhancement of ascorbate activity against glioblastoma xenografts. These data establish selenoproteins as key mediators of cancer redox homeostasis. Cancer sensitivity to free radical-inducing therapies, including ascorbate, may depend on selenium, providing a dietary approach for improving their anticancer efficacy. SIGNIFICANCE: Selenium restriction augments ascorbate efficacy and extends lifespan in a mouse xenograft model of glioblastoma, suggesting that targeting selenium-mediated antioxidant defenses merits clinical evaluation in combination with ascorbate and other pro-oxidant therapies.


Subject(s)
Glioblastoma , Selenium , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Glioblastoma/drug therapy , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Humans , Hydrogen Peroxide , Mice , NADP , Reactive Oxygen Species , Selenium/metabolism , Selenium/pharmacology , Selenoproteins
7.
Cell Syst ; 13(2): 158-172.e9, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34706266

ABSTRACT

Pancreatic cancer cells with limited access to free amino acids can grow by scavenging extracellular protein. In a murine model of pancreatic cancer, we performed a genome-wide CRISPR screen for genes required for scavenging-dependent growth. The screen identified key mediators of macropinocytosis, peripheral lysosome positioning, endosome-lysosome fusion, lysosomal protein catabolism, and translational control. The top hit was GCN2, a kinase that suppresses translation initiation upon amino acid depletion. Using isotope tracers, we show that GCN2 is not required for protein scavenging. Instead, GCN2 prevents ribosome stalling but without slowing protein synthesis; cells still use all of the limiting amino acids as they emerge from lysosomes. GCN2 also adapts gene expression to the nutrient-poor environment, reorienting protein synthesis away from ribosomes and toward lysosomal hydrolases, such as cathepsin L. GCN2, cathepsin L, and the other genes identified in the screen are potential therapeutic targets in pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins , Amino Acids/metabolism , Animals , Cathepsin L/metabolism , Mice , Pancreatic Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
Invest Ophthalmol Vis Sci ; 62(14): 20, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34797906

ABSTRACT

Purpose: The purpose of this study was to present our hypothesis that aging alters metabolic function in ocular tissues. We tested the hypothesis by measuring metabolism in aged murine tissues alongside retinal responses to light. Methods: Scotopic and photopic electroretinogram (ERG) responses in young (3-6 months) and aged (23-26 months) C57Bl/6J mice were recorded. Metabolic flux in retina and eyecup explants was quantified using U-13C-glucose or U-13C-glutamine with gas chromatography-mass spectrometry (GC-MS), O2 consumption rate (OCR) in a perifusion apparatus, and quantifying adenosine triphosphatase (ATP) with a bioluminescence assay. Results: Scotopic and photopic ERG responses were reduced in aged mice. Glucose metabolism, glutamine metabolism, OCR, and ATP pools in retinal explants were mostly unaffected in aged mice. In eyecups, glutamine usage in the Krebs Cycle decreased while glucose metabolism, OCR, and ATP pools remained stable. Conclusions: Our examination of metabolism showed negligible impact of age on retina and an impairment of glutamine anaplerosis in eyecups. The metabolic stability of these tissues ex vivo suggests age-related metabolic alterations may not be intrinsic. Future experiments should focus on determining whether external factors including nutrient supply, oxygen availability, or structural changes influence ocular metabolism in vivo.


Subject(s)
Aging/physiology , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Adenosine Triphosphate/metabolism , Animals , Color Vision/physiology , Electroretinography , Flicker Fusion/physiology , Gas Chromatography-Mass Spectrometry , Glucose/metabolism , Glutamine/metabolism , Light , Male , Metabolomics , Mice , Mice, Inbred C57BL , Night Vision/physiology , Oxygen Consumption/physiology , Photic Stimulation
9.
Cell Syst ; 12(12): 1160-1172.e4, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34559996

ABSTRACT

NAD+ is an essential coenzyme for all living cells. NAD+ concentrations decline with age, but whether this reflects impaired production or accelerated consumption remains unclear. We employed isotope tracing and mass spectrometry to probe age-related changes in NAD+ metabolism across tissues. In aged mice, we observed modest tissue NAD+ depletion (median decrease ∼30%). Circulating NAD+ precursors were not significantly changed, and isotope tracing showed the unimpaired synthesis of nicotinamide from tryptophan. In most tissues of aged mice, turnover of the smaller tissue NAD+ pool was modestly faster such that absolute NAD+ biosynthetic flux was maintained, consistent with more active NAD+-consuming enzymes. Calorie restriction partially mitigated age-associated NAD+ decline by decreasing consumption. Acute inflammatory stress induced by LPS decreased NAD+ by impairing synthesis in both young and aged mice. Thus, the decline in NAD+ with normal aging is relatively subtle and occurs despite maintained NAD+ production, likely due to increased consumption.


Subject(s)
NAD , Niacinamide , Aging , Animals , Caloric Restriction , Mice , NAD/metabolism , Niacinamide/metabolism
10.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34344827

ABSTRACT

Viruses modulate mitochondrial processes during infection to increase biosynthetic precursors and energy output, fueling virus replication. In a surprising fashion, although it triggers mitochondrial fragmentation, the prevalent pathogen human cytomegalovirus (HCMV) increases mitochondrial metabolism through a yet-unknown mechanism. Here, we integrate molecular virology, metabolic assays, quantitative proteomics, and superresolution confocal microscopy to define this mechanism. We establish that the previously uncharacterized viral protein pUL13 is required for productive HCMV replication, targets the mitochondria, and functions to increase oxidative phosphorylation during infection. We demonstrate that pUL13 forms temporally tuned interactions with the mitochondrial contact site and cristae organizing system (MICOS) complex, a critical regulator of cristae architecture and electron transport chain (ETC) function. Stimulated emission depletion superresolution microscopy shows that expression of pUL13 alters cristae architecture. Indeed, using live-cell Seahorse assays, we establish that pUL13 alone is sufficient to increase cellular respiration, not requiring the presence of other viral proteins. Our findings address the outstanding question of how HCMV targets mitochondria to increase bioenergetic output and expands the knowledge of the intricate connection between mitochondrial architecture and ETC function.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Mitochondria/metabolism , Mitochondria/virology , Viral Proteins/metabolism , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/virology , Electron Transport , Host-Pathogen Interactions/physiology , Humans , Mitochondria/ultrastructure , Oxidative Phosphorylation , Viral Proteins/genetics , Virus Replication
11.
Cell Metab ; 33(2): 367-378.e5, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33472024

ABSTRACT

Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use 13C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis. Yet circulating glucose highly labels glycolytic intermediates in only a few tissues: blood, spleen, diaphragm, and soleus muscle. Most glycolytic intermediates in the bulk of body tissue, including liver and quadriceps muscle, come instead from glycogen. Gluconeogenesis contributes less but also broadly to glycolytic intermediates, and its flux persists with physiologic feeding (but not hyperinsulinemic clamp). Instead of suppressing gluconeogenesis, feeding activates oxidation of circulating glucose and lactate to maintain glucose homeostasis. Thus, the bulk of the body slowly breaks down internally stored glycogen while select tissues rapidly catabolize circulating glucose to lactate for oxidation throughout the body.


Subject(s)
Diaphragm/metabolism , Muscle, Skeletal/metabolism , Spleen/metabolism , Animals , Blood Glucose/metabolism , Carbon Isotopes , Gluconeogenesis , Glycogen/blood , Glycogen/metabolism , Glycolysis , Male , Mice , Mice, Inbred C57BL
12.
Nat Metab ; 2(11): 1284-1304, 2020 11.
Article in English | MEDLINE | ID: mdl-33199925

ABSTRACT

Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Aging/metabolism , Membrane Glycoproteins/metabolism , NAD/biosynthesis , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/immunology , Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Aging/immunology , Animals , Bone Marrow Transplantation , Cellular Senescence , HEK293 Cells , Humans , Inflammation/immunology , Liver/growth & development , Liver/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nicotinamide Mononucleotide/metabolism , Phenotype
13.
Cell Death Dis ; 9(2): 240, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445082

ABSTRACT

Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6ß. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6ß promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Pyruvate Kinase/genetics , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Transcription, Genetic , Animals , Apoptosis/genetics , Carbon Isotopes , Cell Membrane/chemistry , Cell Membrane/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Disease Models, Animal , Electroretinography , Gene Expression Regulation , Humans , In Situ Nick-End Labeling , Integrases/genetics , Integrases/metabolism , Mice , Mice, Knockout , NADP/metabolism , Phospholipids/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyruvate Kinase/deficiency , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Signal Transduction , Staining and Labeling/methods , Tomography, Optical Coherence , Triglycerides/metabolism
14.
Elife ; 62017 09 13.
Article in English | MEDLINE | ID: mdl-28901286

ABSTRACT

Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.


Subject(s)
Adaptation, Ocular , Energy Metabolism , Ependymoglial Cells/physiology , Photoreceptor Cells/physiology , Retinal Pigment Epithelium/physiology , Animals , Ependymoglial Cells/metabolism , Glucose/metabolism , Humans , Lactates/metabolism , Mice , Photoreceptor Cells/metabolism , Retinal Pigment Epithelium/metabolism , Zebrafish
15.
J Biol Chem ; 292(31): 12895-12905, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28615447

ABSTRACT

Metabolite transport is a major function of the retinal pigment epithelium (RPE) to support the neural retina. RPE dysfunction plays a significant role in retinal degenerative diseases. We have used mass spectrometry with 13C tracers to systematically study nutrient consumption and metabolite transport in cultured human fetal RPE. LC/MS-MS detected 120 metabolites in the medium from either the apical or basal side. Surprisingly, more proline is consumed than any other nutrient, including glucose, taurine, lipids, vitamins, or other amino acids. Besides being oxidized through the Krebs cycle, proline is used to make citrate via reductive carboxylation. Citrate, made either from 13C proline or from 13C glucose, is preferentially exported to the apical side and is taken up by the retina. In conclusion, RPE cells consume multiple nutrients, including glucose and taurine, but prefer proline, and they actively synthesize and export metabolic intermediates to the apical side to nourish the outer retina.


Subject(s)
Proline/metabolism , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Animals , Biological Transport , Carbon Isotopes , Cell Polarity , Cells, Cultured , Citric Acid/metabolism , Citric Acid Cycle , Coculture Techniques , Embryo, Mammalian/cytology , Glucose/metabolism , Humans , Kinetics , Metabolomics/methods , Mice , Retina/cytology , Retina/enzymology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/enzymology , Taurine/metabolism , Tissue Culture Techniques
16.
Proc Natl Acad Sci U S A ; 113(51): 14710-14715, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27911769

ABSTRACT

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells that requires an active metabolism to maintain outer retinal homeostasis and compensate for oxidative stress. Using 13C metabolic flux analysis in human RPE cells, we found that RPE has an exceptionally high capacity for reductive carboxylation, a metabolic pathway that has recently garnered significant interest because of its role in cancer cell survival. The capacity for reductive carboxylation in RPE exceeds that of all other cells tested, including retina, neural tissue, glial cells, and a cancer cell line. Loss of reductive carboxylation disrupts redox balance and increases RPE sensitivity to oxidative damage, suggesting that deficiencies of reductive carboxylation may contribute to RPE cell death. Supporting reductive carboxylation by supplementation with an NAD+ precursor or its substrate α-ketoglutarate or treatment with a poly(ADP ribose) polymerase inhibitor protects reductive carboxylation and RPE viability from excessive oxidative stress. The ability of these treatments to rescue RPE could be the basis for an effective strategy to treat blinding diseases caused by RPE dysfunction.


Subject(s)
Carbon/chemistry , Eye/embryology , Ketoglutaric Acids/chemistry , Macular Degeneration/metabolism , Retinal Pigment Epithelium/embryology , Retinal Pigment Epithelium/metabolism , Aged, 80 and over , Animals , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cell Survival , Fatty Acids/chemistry , Female , HeLa Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Isocitrate Dehydrogenase/metabolism , Macular Degeneration/pathology , Mice , NAD/chemistry , Neoplasms/metabolism , Neoplasms/pathology , Oxidation-Reduction , Oxidative Stress , Oxygen/chemistry , Poly(ADP-ribose) Polymerases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...