Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 13478, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194382

ABSTRACT

Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N2O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N2O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha-1 yr-1 increased maize yield and N2O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha-1, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.


Subject(s)
Crop Production , Fertilizers , Glycine max/growth & development , Nitrogen , Soil/chemistry , Zea mays/growth & development , Brazil , Nitrogen/chemistry , Nitrogen/pharmacology
2.
PLoS One ; 13(5): e0196560, 2018.
Article in English | MEDLINE | ID: mdl-29718960

ABSTRACT

Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.


Subject(s)
Body Size/physiology , Conservation of Natural Resources , Fishes/physiology , Animals , Brazil , Climate Change , Hot Temperature , Rainforest , Rivers
3.
Ecol Appl ; 27(1): 193-207, 2017 01.
Article in English | MEDLINE | ID: mdl-28052498

ABSTRACT

Intensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood. We sampled seven headwater streams draining watersheds in forest (n = 3) or soybeans (n = 4) to examine the effects of soybean cropping on stream solute concentrations and watershed export in a region of rapid soybean expansion in the Brazilian state of Mato Grosso. We measured stream flows and concentrations of NO3- , PO43- , SO42- , Cl- , NH4+ , Ca2+ , Mg2+ , Na+ , K+ , Al3+ , Fe3+ , and dissolved organic carbon (DOC) biweekly to monthly to determine solute export. We also measured stormflows and stormflow solute concentrations in a subset of watersheds (two forest, two soybean) during two/three storms, and solutes and δ18 O in groundwater, rainwater, and throughfall to characterize watershed flowpaths. Concentrations of all solutes except K+ varied seasonally in streamwater, but only Fe3+ concentrations differed between land uses. The highest streamwater and rainwater solute concentrations occurred during the peak season of wildfires in Mato Grosso, suggesting that regional changes in atmospheric composition and deposition influence seasonal stream solute concentrations. Despite no concentration differences between forest and soybean land uses, annual export of NH4+ , PO43- , Ca2+ , Fe3+ , Na+ , SO42- , DOC, and TSS were significantly higher from soybean than forest watersheds (5.6-fold mean increase). This increase largely reflected a 4.3-fold increase in water export from soybean watersheds. Despite this increase, total solute export per unit watershed area (i.e., yield) remained low for all watersheds (<1 kg NO3- N·ha-1 ·yr-1 , <2.1 kg NH4+ -N·ha-1 ·yr-1 , <0.2 kg PO43- -P·ha-1 ·yr-1 , <1.5 kg Ca2+ ·ha-1 ·yr-1 ). Responses of both streamflows and solute concentrations to crop agriculture appear to be controlled by high soil hydraulic conductivity, groundwater-dominated hydrologic flowpaths on deep soils, and the absence of nitrogen fertilization. To date, these factors have buffered streams from the large increases in solute concentrations that often accompany intensive croplands in other locations.


Subject(s)
Forests , Geologic Sediments/chemistry , Glycine max , Rivers/chemistry , Agriculture , Brazil , Seasons , Glycine max/growth & development
4.
PLoS One ; 9(1): e86991, 2014.
Article in English | MEDLINE | ID: mdl-24489823

ABSTRACT

The diversity and composition of ecological communities often co-vary with ecosystem productivity. However, the relative importance of productivity, or resource abundance, versus the spatial distribution of resources in shaping those ecological patterns is not well understood, particularly for the bacterial communities that underlie most important ecosystem functions. Increasing ecosystem productivity in lakes has been shown to influence the composition and ecology of bacterial communities, but existing work has only evaluated the effect of increasing resource supply and not heterogeneity in how those resources are distributed. We quantified how bacterial communities varied with the trophic status of lakes and whether community responses differed in surface and deep habitats in response to heterogeneity in nutrient resources. Using ARISA fingerprinting, we found that bacterial communities were more abundant, richer, and more distinct among habitats as lake trophic state and vertical heterogeneity in nutrients increased, and that spatial resource variation produced habitat specific responses of bacteria in response to increased productivity. Furthermore, changes in communities in high nutrient lakes were not produced by turnover in community composition but from additional taxa augmenting core bacterial communities found in lower productivity lakes. These data suggests that bacterial community responses to nutrient enrichment in lakes vary spatially and are likely influenced disproportionately by rare taxa.


Subject(s)
Bacteria/growth & development , Lakes/chemistry , Nitrogen/pharmacology , Phosphorus/pharmacology , Bacteria/drug effects , British Columbia , Ecosystem , Eutrophication , Geography , Models, Theoretical , Principal Component Analysis , Washington
5.
Biol Lett ; 9(3): 20130048, 2013 Jun 23.
Article in English | MEDLINE | ID: mdl-23554279

ABSTRACT

When resources are spatially and temporally variable, consumers can increase their foraging success by moving to track ephemeral feeding opportunities as these shift across the landscape; the best examples derive from herbivore-plant systems, where grazers migrate to capitalize on the seasonal waves of vegetation growth. We evaluated whether analogous processes occur in watersheds supporting spawning sockeye salmon (Oncorhynchus nerka), asking whether seasonal activities of predators and scavengers shift spatial distributions to capitalize on asynchronous spawning among populations of salmon. Both glaucous-winged gulls and coastal brown bears showed distinct shifts in their spatial distributions over the course of the summer, reflecting the shifting distribution of spawning sockeye salmon, which was associated with variation in water temperature among spawning sites. By tracking the spatial and temporal variation in the phenology of their principal prey, consumers substantially extended their foraging opportunity on a superabundant, yet locally ephemeral, resource. Ecosystem-based fishery management efforts that seek to balance trade-offs between fisheries and ecosystem processes supported by salmon should, therefore, assess the importance of life-history variation, particularly in phenological traits, for maintaining important ecosystem functions, such as providing marine-derived resources for terrestrial predators and scavengers.


Subject(s)
Fishes/physiology , Reproduction , Animal Migration , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...