Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5932, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467766

ABSTRACT

Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O2 to H2O2. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion. Furthermore, only a few glyoxal oxidases have been expressed and characterized so far. Here, we report on a new glyoxal oxidase from Trametes versicolor (TvGLOX) that was expressed at high levels in Pichia pastoris (reclassified as Komagataella phaffii). TvGLOX was found to catalyze the oxidation of aldehyde groups in glyoxylic acid, methyl glyoxal, HMF, 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA), but barely accepted alcohol groups as in 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), preventing formation of FDCA from HMF. Various redox activators were tested for TvGLOX reactivation during catalyzed reactions. Among them, a combination of horseradish peroxidase and its substrate 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) most efficiently reactivated TvGLOX. Through continuous reactivation of TvGLOX in a two-enzyme system employing a recombinant Moesziomyces antarcticus aryl-alcohol oxidase (MaAAO) almost complete conversion of 8 mM HMF to FDCA was achieved within 24 h.


Subject(s)
Alcohol Oxidoreductases , Furaldehyde/analogs & derivatives , Hydrogen Peroxide , Polyporaceae , Trametes , Trametes/genetics , Trametes/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidation-Reduction , Glyoxal
2.
J Biotechnol ; 346: 47-51, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35122934

ABSTRACT

Directed evolution is a powerful tool for developing biocatalysts with tailor-made properties for biocatalytic applications. High-throughput activity screening of large mutant libraries generated by e.g. means of directed evolution is usually performed in 96-well microtiter plates requiring, however, time-consuming and laborious enzyme expression, cell harvesting and activity measurements. In addition, automated liquid handling systems are needed to cope with the high number of colonies to be screened. Herein, we developed an agar plate-based assay for simple and fast screening of H2O2-producing aryl-alcohol oxidase (AAO) mutant libraries in Pichia pastoris. Buffered minimal methanol agar plates were supplemented with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), horseradish peroxidase (HRP) and the target substrate. AAO activity is visualized by formation of green zones around AAO-secreting P. pastoris colonies due to ABTS oxidation by HRP which is fueled with H2O2 by AAO in course of substrate oxidation. Colonies were screened within 24 h for AAO activity using different AAO substrates like veratryl alcohol, p-anisyl alcohol or trans,trans-2,4-hexadien-1-ol and even low AAO activity towards 5-hydroxymethylfurfural could be detected within 48 h. The developed agar plate-based assay can be extended to other substrates and might also be applied for fast and substrate-specific screening of other H2O2-producing oxidases in P. pastoris.


Subject(s)
Alcohol Oxidoreductases , Hydrogen Peroxide , Agar , Alcohol Oxidoreductases/metabolism , Pichia/genetics , Pichia/metabolism , Saccharomycetales
3.
Appl Microbiol Biotechnol ; 105(21-22): 8313-8327, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34643786

ABSTRACT

The development of enzymatic processes for the environmentally friendly production of 2,5-furandicarboxylic acid (FDCA), a renewable precursor for bioplastics, from 5-hydroxymethylfurfural (HMF) has gained increasing attention over the last years. Aryl-alcohol oxidases (AAOs) catalyze the oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) through 2,5-diformylfuran (DFF) and have thus been applied in enzymatic reaction cascades for the production of FDCA. AAOs are flavoproteins that oxidize a broad range of benzylic and aliphatic allylic primary alcohols to the corresponding aldehydes, and in some cases further to acids, while reducing molecular oxygen to hydrogen peroxide. These promising biocatalysts can also be used for the synthesis of flavors, fragrances, and chemical building blocks, but their industrial applicability suffers from low production yield in natural and heterologous hosts. Here we report on heterologous expression of a new aryl-alcohol oxidase, MaAAO, from Moesziomyces antarcticus at high yields in the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). Fed-batch fermentation of recombinant P. pastoris yielded around 750 mg of active enzyme per liter of culture. Purified MaAAO was highly stable at pH 2-9 and exhibited high thermal stability with almost 95% residual activity after 48 h at 57.5 °C. MaAAO accepts a broad range of benzylic primary alcohols, aliphatic allylic alcohols, and furan derivatives like HMF as substrates and some oxidation products thereof like piperonal or perillaldehyde serve as building blocks for pharmaceuticals or show health-promoting effects. Besides this, MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FFCA, which has not been shown for any other AAO so far. Combining MaAAO with an unspecific peroxygenase oxidizing HMFCA to FFCA in one pot resulted in complete conversion of HMF to FDCA within 144 h. MaAAO is thus a promising biocatalyst for the production of precursors for bioplastics and bioactive compounds. KEY POINTS: • MaAAO from M. antarcticus was expressed in P. pastoris at 750 mg/l. • MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). • Complete conversion of HMF to 2,5-furandicarboxylic acid by combining MaAAO and UPO.


Subject(s)
Furaldehyde , Alcohol Oxidoreductases , Basidiomycota , Furans , Oxidation-Reduction , Saccharomycetales
4.
Appl Microbiol Biotechnol ; 105(20): 7743-7755, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34545417

ABSTRACT

Fungal aryl-alcohol oxidases (AAOs) are attractive biocatalysts because they selectively oxidize a broad range of aromatic and aliphatic allylic primary alcohols while yielding hydrogen peroxide as the only by-product. However, their use is hampered by challenging and often unsuccessful heterologous expression. Production of PeAAO1 from Pleurotus eryngii ATCC 90787 in Pichia pastoris failed, while PeAAO2 from P. eryngii P34 with an amino acid identity of 99% was expressed at high yields. By successively introducing mutations in PeAAO1 to mimic the sequence of PeAAO2, the double mutant PeAAO1 ER with mutations K583E and Q584R was constructed, that was successfully expressed in P. pastoris. Functional expression was enhanced up to 155 U/l via further replacements D361N (variant NER) or V367A (variant AER). Fed-batch cultivation of recombinant P. pastoris yielded up to 116 mg/l of active variants. Glycosylated PeAAO1 variants demonstrated high stability and catalytic efficiencies similar to PeAAO2. Interestingly, P. pastoris expressing PeAAO1 variant ER contained roughly 13 gene copies but showed similar volumetric activity as NER and AER with one to two gene copies and four times lower mRNA levels. Additional H-bonds and salt bridges introduced by mutations K583E and Q584R might facilitate heterologous expression by enhanced protein folding.Key points• PeAAO1 not expressed in P. pastoris and PeAAO2 well-expressed in Pichia differ at 7 positions.• Expression of PeAAO1 in P. pastoris achieved through mutagenesis based on PeAAO2 sequence.• Combination of K583E and Q584R is essential for expression of PeAAO1 in P. pastoris.


Subject(s)
Alcohol Oxidoreductases/biosynthesis , Pleurotus , Mutation , Pichia/genetics , Pichia/metabolism , Pleurotus/enzymology , Pleurotus/genetics , Recombinant Proteins/biosynthesis , Saccharomycetales
5.
Appl Microbiol Biotechnol ; 104(21): 9205-9218, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32949280

ABSTRACT

The fungal secretome comprises various oxidative enzymes participating in the degradation of lignocellulosic biomass as a central step in carbon recycling. Among the secreted enzymes, aryl-alcohol oxidases (AAOs) are of interest for biotechnological applications including production of bio-based precursors for plastics, bioactive compounds, and flavors and fragrances. Aryl-alcohol oxidase 2 (PeAAO2) from the fungus Pleurotus eryngii was heterologously expressed and secreted at one of the highest yields reported so far of 315 mg/l using the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). The glycosylated PeAAO2 exhibited a high stability in a broad pH range between pH 3.0 and 9.0 and high thermal stability up to 55 °C. Substrate screening with 41 compounds revealed that PeAAO2 oxidized typical AAO substrates like p-anisyl alcohol, veratryl alcohol, and trans,trans-2,4-hexadienol with up to 8-fold higher activity than benzyl alcohol. Several compounds not yet reported as substrates for AAOs were oxidized by PeAAO2 as well. Among them, cumic alcohol and piperonyl alcohol were oxidized to cuminaldehyde and piperonal with high catalytic efficiencies of 84.1 and 600.2 mM-1 s-1, respectively. While the fragrance and flavor compound piperonal also serves as starting material for agrochemical and pharmaceutical building blocks, various positive health effects have been attributed to cuminaldehyde including anticancer, antidiabetic, and neuroprotective effects. PeAAO2 is thus a promising biocatalyst for biotechnological applications. KEY POINTS: • Aryl-alcohol oxidase PeAAO2 from P. eryngii was produced in P. pastoris at 315 mg/l. • Purified enzyme exhibited stability over a broad pH and temperature range. • Oxidation products cuminaldehyde and piperonal are of biotechnological interest. Graphical abstract.


Subject(s)
Pleurotus , Alcohol Oxidoreductases , Odorants , Pichia/genetics , Pleurotus/genetics , Saccharomycetales
SELECTION OF CITATIONS
SEARCH DETAIL
...