Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931490

ABSTRACT

This article presents an innovative combination of textile electrical circuits with advanced capabilities of electronic RFID sensors, indicating the revolutionary nature of the development of textronics, which is used in various areas of life, from fashion to medicine. A review of the literature relating to the construction of textronic RFID identifiers and capacitive textronic sensors is performed. Various approaches to measuring capacity using RFID tags are discussed. This article focuses on presenting the concept of a capacitive sensor with an RFID interface, consisting of a microelectronic part and a textile part. The textile part is based on the WL4007 material, where antennas and capacitive sensors are embroidered using SPARKFUN DEV 11791 conductive thread. The antenna is a half-wave dipole designed to operate at a frequency of 860 MHZ. The microelectronic part is sewn to the textile part and consists of a microcontroller, an RFID-integrated circuit and a coupling loop, placed on the PCB. The embroidered antenna is coupled with a loop on the microelectronic module. This article focuses on presenting various designs of textronic electrodes, enabling various types of measurements. Article presents capacitance measurements of individual sensor electrodes, made using a measuring bridge and a built RFID tag. The sensors' capacity measurement results are shown.

2.
Sensors (Basel) ; 23(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139549

ABSTRACT

The aim of this paper is to demonstrate progress in textronic UHF RFID transponder (RFIDtex tag) technology. The fundamental idea behind the RFIDtex tag design involves galvanic separation between circuits of the sewn antenna and the chip, which are electromagnetically coupled through a system of inductive loops. To advance the development of this concept, it is crucial to detect factors affecting the performance of the transponders. To achieve this goal, a mathematical model of the textronic UHF RFID transponder was developed. It involves relationships that describe the impedance of each element, the mutual inductance of the loops, and the chip voltage, and it enables the exploration of the influence of these variables on general parameters such as impedance matching and read range. Various analytical and numerical approaches were considered to obtain the value of the mutual inductance of the loops. The dimensions and geometry of the antenna, as well as the matching circuit in the microelectronic module, were taken into account. Based on the mathematical model, it was determined that mutual inductance strongly affects the chip voltage for frequencies higher than 800 MHz. The calculations from the mathematical model were compared with numerical simulations. Experimental studies were also conducted to investigate how the transponder performance is affected by either the distance between the centers of the loops or the conductivity of the threads used to embroider the antenna. The measurement results allowed us to conclude that even small imperfections in the manufacturing of the transponder, which slightly increase the vertical or horizontal distance between the centers of the loops, cause a dramatic decrease in the mutual inductance and coupling coefficient, significantly impacting the transponder's performance.

3.
Materials (Basel) ; 16(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37444952

ABSTRACT

Antennas dedicated to RFID systems created on textile substrates should maintain strictly defined parameters. During washing, the materials from which such antennas are made are exposed to mechanical and chemical exposure-degradation of the parameters characterizing those materials may occur, which in turn may lead to a change in the parameters of the antenna. For research purposes, four groups of model dipole antennas (sewn with two types of conductive threads on two fabrics) were created and then they were subjected to several washing processes. After each stage of the experiment, the impedance parameters of the demonstration antennas were measured using indirect measurements. Based on the obtained results, it was found that these parameters change their values during washing, and that this is influenced by a number of factors, e.g., shrinkage of the substrate fabric.

4.
Materials (Basel) ; 15(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36295134

ABSTRACT

Recent advances in the development of innovative textronic products are often related to the implementation of radio-frequency identification (RFID) technology. Such devices contain components of wireless telecommunications systems, in which radiofrequency circuits should be designed taking into account not only the frequency band or destined application, but also the dielectric properties of the materials. As is known from the theory of RFID systems, the dielectric permittivity and loss angle of the substrates significantly affect the performance of RFID transponders. Therefore, the knowledge on the variability of these parameters is highly important in the context of developing new solutions in textronic devices with the RFID interface. According to the plan of studies, at the beginning, the comprehensive characterization and determination of the dielectric parameters of various types of textile substrates were carried out. On this basis, the influence of fabrics on the performance of textronic RFID (RFIDtex) tags was characterized with numerical calculations. As the RFIDtex transponders proposed by the authors in the patent PL231291 have an outstanding design in which the antenna and the chip are located on physically separated substrates and are galvanically isolated, the special means had to be implemented when creating a numerical model. On the other hand, the great advantage of the developed construction was confirmed. Since the impedance at the chip's terminals is primarily determined by the coupling system, the selected fabrics have relatively low impact on the efficiency of the RFIDtex transponder. Such an effect is impossible to achieve with classical designs of passive or semi-passive transponders. The correctness of the simulations was verified on the exemplary demonstrators, in threshold and rotation measurements performed at the laboratory stand.

5.
Sensors (Basel) ; 21(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562566

ABSTRACT

In order to respond the growing interest towards radio frequency identification textile transponders, the authors propose a new approach to design radio frequency identification (RFID) devices by introducing the RFIDtex concept. The coupling system of inductive loops is implemented in the textronic structure with the RFID interface in order to split the transponder into two independently manufactured components. Then both modules can be easily integrated into the RFIDtex tag. The presented simulation and measurement results prove the concept of manufacturing a relatively small antenna in the form of a meandered dipole sewn in with a single thread, and further, that can be connected to the RFID chip through the coupling system without galvanic junctions. The achieved parameters clearly indicate that the tag can correctly communicate with the read/write device as well as the coupling between its both parts works properly, and the impedance matching is possible in this case. The possibility of confectioning products with electronic identification tags at the textile factory site and improved resistance to the impact of environmental conditions are the main advantage of the proposed approach to the RFID devices designing. The RFIDtex transponder idea proposed by the authors was restricted in the patent no PL 231291 B1.

6.
Sensors (Basel) ; 20(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751336

ABSTRACT

The paper covers the application of Radio Frequency IDentification (RFID) technology in road traffic management with regard to vehicle identification. Various infrastructure configurations for Automated Vehicle Identification (AVI) have been presented, including configurations that can be used in urban traffic as part of the Smart City concept. In order to describe the behavior of multiple identifications of moving vehicles, an operation model of the dynamic identification using RFID is described. While it extends the definition of the correct work zone, this paper introduces the concept of dividing the zone into sections corresponding to so-called inventory rounds. The system state is described using a set of matrices in which unread, read, and lost transponders are recorded in subsequent rounds and sections. A simplified algorithm of the dynamic object identification system was also proposed. The results of the simulations and lab experiments show that the efficiency of mobile object identification is conditioned by the parameters of the communication protocol, the speed of movement, and the number of objects.

7.
Micromachines (Basel) ; 11(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316444

ABSTRACT

The importance of the radio-frequency identification (RFID) technology and photovoltaic (PV) systems has been growing systematically in the modern world full of intelligent products connected to the Internet. Monitoring parameters of green energy plants is a crucial issue for efficient conversion of solar radiation, and cheap RFID transponders/sensors can be involved in this process to provide better performance of module supervision in scattered installations. Since many components of PV panels disturb the radio-wave propagation, research in the antenna scope has to be carried out to reach the proposed fusion. The problem with RFID transponders being detuned in close proximity to glass or metal surfaces can be solved on the basis of solutions known from the scientific literature. The authors went further, revealing a new antenna construction that can be fabricated straight on a cover glass of the PV panels. To achieve the established task, they incorporated advantages from the latest advancements in materials technology and low-power electronics and from the progress in understanding radio-wave propagation phenomena. The numerical model of the antenna was elaborated in the Hyper Lynx 3D EM software environment, and test samples were fabricated on the technology line of ML System Company. The convergence of calculated and measured antenna parameters confirms the design correctness. Thus, the studied antenna can be used to elaborate the cheap semipassive RFID transponders/sensors in the PV panel production lines.

8.
Sensors (Basel) ; 20(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906575

ABSTRACT

The idea of battery-less flow sensors and their implementation in wireless measurement systems is presented in this research article. The authors take advantage of their latest achievements in the Low Temperature Co-fired Ceramic (LTCC) technology, RadioFrequency Identification (RFID) technique, and increasing availability of low power electronics in order to get rid of the need to use electrochemical cells in a power supply unit of the elaborated device. To reach this assumption, special care has to be put on the energy balance in such an autonomous sensor node. First of all, the new concept of an electromagnetic LTCC turbine transducer with a signal conditioner which only draws a current of around 15 µA, is proposed for measuring a flow rate of fluids. Next, the autonomy of the device is showed; measured data are gathered in a microcontroller memory and sent to a control unit via an RFID interface which enables both information exchange and power transfer. The energy harvested from the electromagnetic field is used to conduct a data transmission, but also its excess can be accumulated, so the proposed sensor operates as a semi-passive transponder. The total autonomy of the device is achieved by implementing a second harvester that continually gathers energy from the environmental electromagnetic field of common active radio systems (e.g., Global System for Mobile Communications (GSM), wireless network Wi-Fi).

9.
Sensors (Basel) ; 19(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614467

ABSTRACT

A general view on the problem of designing atypical battery-free, autonomous semi-passive RFID transponders-sensors (autonomous sensors with RFID interfaces) is presented in this review. Although RFID devices can be created in any of the electronic technologies, the design stage must be repeated each time when the manufacturing processes are changed, and their specific conditions have to be taken into consideration when modeling new solutions. Aspects related to the factors affecting the synthesis of semi-passive RFID transponder components on the basis of which the idea of the autonomous RFID sensor was developed are reflected in the paper. Besides their general characteristics, the operation conditions of modern RFID systems and achievements in autonomous RFID sensor technology are revealed in subsequent sections-they include such issues as technological aspects of the synthesis process, designing antennas for RFID transponders, determining RFID chip and antenna parameters, creating the interrogation zone IZ, etc. It should be pointed that the universal construction of an autonomous RFID sensor, which could be use in any application of the automatic object identification system, cannot be developed according to the current state of the art. Moreover, a trial and error method is the most commonly used in the today's process of designing new solutions, and the basic parameters are estimated on the basis of the tests and the research team experience. Therefore, it is necessary to look for new inventions and methods in order to improve implementations of RFID systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...