Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(728): eade2774, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170787

ABSTRACT

Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Cohesins , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Mutation/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Repair/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , DNA Damage
2.
Exp Hematol ; 43(1): 32-43.e1-35, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450514

ABSTRACT

The use of genome-wide copy-number analysis and massive parallel sequencing has revolutionized the understanding of the clonal architecture of pediatric acute lymphoblastic leukemia (ALL) by demonstrating that this disease is composed of highly variable clonal ancestries following the rules of Darwinian selection. The current study aimed to analyze the molecular composition of childhood ALL biopsies and patient-derived xenografts with particular emphasis on mechanisms associated with acquired chemoresistance. Genomic DNA from seven primary pediatric ALL patient samples, 29 serially passaged xenografts, and six in vivo selected chemoresistant xenografts were analyzed with 250K single-nucleotide polymorphism arrays. Copy-number analysis of non-drug-selected xenografts confirmed a highly variable molecular pattern of variegated subclones. Whereas primary patient samples from initial diagnosis displayed a mean of 5.7 copy-number alterations per sample, serially passaged xenografts contained a mean of 8.2 and chemoresistant xenografts a mean of 10.5 copy-number alterations per sample, respectively. Resistance to cytarabine was explained by a new homozygous deletion of the DCK gene, whereas methotrexate resistance was associated with monoallelic deletion of FPGS and mutation of the remaining allele. This study demonstrates that selecting for chemoresistance in xenografted human ALL cells can reveal novel mechanisms associated with drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Clone Cells/pathology , Neoplastic Stem Cells/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Antineoplastic Agents/therapeutic use , Biopsy , Cytarabine/pharmacology , Cytarabine/therapeutic use , DNA, Neoplasm/genetics , Deoxycytidine Kinase/genetics , Dexamethasone/therapeutic use , Disease Progression , Drug Resistance, Neoplasm/genetics , Female , Gene Dosage , Heterografts , Humans , Male , Methotrexate/pharmacology , Methotrexate/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasm Proteins/genetics , Neoplasm Transplantation , Peptide Synthases/genetics , Polymorphism, Single Nucleotide , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Radiation Chimera , Sequence Analysis, DNA , Vincristine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...