Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Chem Rev ; 124(10): 6393-6443, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38669641

ABSTRACT

Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.

2.
Chem Soc Rev ; 53(11): 5704-5780, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38666439

ABSTRACT

Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.

3.
ACS Sustain Chem Eng ; 11(22): 8294-8307, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37292449

ABSTRACT

Reversible crosslinking offers an attractive strategy to modify and improve the properties of polymer materials while concurrently enabling a pathway for chemical recycling. This can, for example, be achieved by incorporating a ketone functionality into the polymer structure to enable post-polymerization crosslinking with dihydrazides. The resulting covalent adaptable network contains acylhydrazone bonds cleavable under acidic conditions, thereby providing reversibility. In the present work, we regioselectively prepare a novel isosorbide monomethacrylate with a pendant levulinoyl group via a two-step biocatalytic synthesis. Subsequently, a series of copolymers with different contents of the levulinic isosorbide monomer and methyl methacrylate are prepared by radical polymerization. Using dihydrazides, these linear copolymers are then crosslinked via reaction with the ketone groups in the levulinic side chains. Compared to the linear prepolymers, the crosslinked networks exhibit enhanced glass transition temperatures and thermal stability, up to 170 and 286 °C, respectively. Moreover, the dynamic covalent acylhydrazone bonds are efficiently and selectively cleaved under acidic conditions to retrieve the linear polymethacrylates. We next show that recovered polymers can again be crosslinked with adipic dihydrazide, thus demonstrating the circularity of the materials. Consequently, we envision that these novel levulinic isosorbide-based dynamic polymethacrylate networks have great potential in the field of recyclable and reusable biobased thermoset polymers.

4.
J Colloid Interface Sci ; 646: 381-390, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37207420

ABSTRACT

Ag nanoparticles (Ag NPs) are among the most promising candidates to replace Pt as the catalyst for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). However, synthesizing size-controlled Ag NPs with efficient catalytic performance is still challenging. Herein, uniform Ag NPs are produced through a γ-radiation induced synthesis route in aqueous solutions, using the ionomer PTPipQ100 as both an efficient size regulator in the synthesis and a conductor of hydroxide ions during the ORR process. The origin of the size control is mainly attributed to the affinity of the ionomer to metallic silver. The resulting Ag NPs covered with ionomer layers can be applied as model catalysts for ORR. The nanoparticles that were prepared using 320 ppm ionomer in the reaction solution turned out to be coated with a âˆ¼ 1 nm thick ionomer layer and exhibited superior ORR activity as compared to other Ag NPs of similar size studied here. The improved electrocatalytic performance can be attributed to the optimal ionomer coverage that enables fast oxygen diffusion, as well as interactions at the Ag-ionomer interface which promote the desorption of OH intermediates from the Ag surface. This work demonstrates the advantage of using an ionomer as the capping agent to produce efficient ORR catalysts.

5.
ACS Energy Lett ; 8(4): 1900-1910, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090167

ABSTRACT

Multi-gigawatt-scale hydrogen production by water electrolysis is central in the green transition when it comes to storage of energy and forming the basis for sustainable fuels and materials. Alkaline water electrolysis plays a key role in this context, as the scale of implementation is not limited by the availability of scarce and expensive raw materials. Even though it is a mature technology, the new technological context of the renewable energy system demands more from the systems in terms of higher energy efficiency, enhanced rate capability, as well as dynamic, part-load, and differential pressure operation capability. New electrode separators that can support high currents at small ohmic losses, while effectively suppressing gas crossover, are essential to achieving this. This Focus Review compares the three main development paths that are currently being pursued in the field with the aim to identify the advantages and drawbacks of the different approaches in order to illuminate rational ways forward.

6.
ACS Macro Lett ; 12(1): 20-25, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36538018

ABSTRACT

Poly(xanthene)s (PXs) carrying trimethylammonium, methylpiperidinium, and quinuclidinium cations were synthesized and studied as a new class of anion exchange membranes (AEMs). The polymers were prepared in a superacid-mediated polyhydroxyalkylation involving 4,4'-biphenol and 1-bromo-3-(trifluoroacetylphenyl)-propane, followed by quaternization reactions with the corresponding amines. The architecture with a rigid PX backbone decorated with cations via flexible alkyl spacer chains resulted in AEMs with high ionic conductivity, thermal stability and alkali-resistance. For example, hydroxide conductivities up to 129 mS cm-1 were reached at 80 °C, and all the AEMs showed excellent alkaline stability with less than 4% ionic loss after treatment in 2 M aq. NaOH at 90 °C during 720 h. Critically, the diaryl ether links of the PX backbone remained intact after the harsh alkaline treatment, as evidenced by both 1H NMR spectroscopy and thermogravimetry. Our combined findings suggest that PX AEMs are viable materials for application in alkaline fuel cells and electrolyzers.


Subject(s)
Alkalies , Xanthenes , Alkalies/chemistry , Membranes, Artificial , Cations
7.
Biomacromolecules ; 23(6): 2685-2696, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35617050

ABSTRACT

Incorporating rigid cyclic acetal and ketal units into polymer structures is an important strategy toward recyclable high-performance materials from renewable resources. In the present work, citric acid, a widely used platform chemical derived from biomass, has been efficiently converted into di- and tricyclic diketones. Ketalization with glycerol or trimethylolpropane afforded rigid spirodiols, which were obtained as complex mixtures of isomers. After a comprehensive NMR analysis, the spirodiols were converted into the respective di(meth)acrylates and utilized in thiol-ene polymerizations in combination with different dithiols. The resulting poly(ß-thioether ester ketal)s were thermally stable up to 300 °C and showed glass-transition temperatures in a range of -7 to 40 °C, depending on monomer composition. The polymers were stable in aqueous acids and bases, but in a mixture of 1 M aqueous HCl and acetone, the ketal functional groups were cleanly hydrolyzed, opening the pathway for potential chemical recycling of these materials. We envision that these novel bioderived spirodiols have a great potential to become valuable and versatile bio-based building blocks for several different kinds of polymer materials.


Subject(s)
Esters , Sulfides , Alcohols/chemistry , Citric Acid , Ethers , Polymerization , Polymers/chemistry
8.
ACS Sustain Chem Eng ; 9(50): 16874-16880, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34956739

ABSTRACT

We here report on the synthesis and polymerization of nitrile-containing methacrylate monomers, prepared via straightforward nitrilation of the corresponding lignin-inspired aldehyde. The polymethacrylates reached exceptionally high glass transition temperatures (T g values), i.e., 150, 164, and 238 °C for the 4-hydroxybenzonitrile, vanillonitrile, and syringonitrile derivatives, respectively, and were thermally stable up to above 300 °C. Copolymerizations of the nitrile monomers with styrene and methyl methacrylate, respectively, gave potentially melt processable materials with tunable T g values and enhanced solvent resistance. The use of lignin-derived nitrile-containing monomers represents an efficient strategy toward well-defined biobased high T g polymer materials.

9.
Biomacromolecules ; 22(6): 2338-2351, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33961400

ABSTRACT

We present here a series of thermoresponsive glycopolymers in the form of poly(N-isopropylacrylamide)-co-(2-[ß-manno[oligo]syloxy] ethyl methacrylate)s. These copolymers were prepared from oligo-ß-mannosyl ethyl methacrylates that were synthesized through enzymatic catalysis, and were subsequently investigated with respect to their aggregation and phase behavior in aqueous solution using a combination of 1H NMR spectroscopy, dynamic light scattering, cryogenic transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The thermoresponsive glycopolymers were prepared by conventional free radical copolymerization of different mixtures of 2-(ß-manno[oligo]syloxy)ethyl methacrylates (with either one or two saccharide units) and N-isopropylacrylamide (NIPAm). The results showed that below the lower critical solution temperature (LCST) of poly(NIPAm), the glycopolymers readily aggregate into nanoscale structures, partly due to the presence of the saccharide moieties. Above the LCST of poly(NIPAm), the glycopolymers rearrange into a heterogeneous mixture of fractal and disc/globular aggregates. Cryo-TEM and SAXS data demonstrated that the presence of the pendant ß-mannosyl moieties in the glycopolymers induces a gradual conformational change over a wide temperature range. Even though the onset of this transition is not different from the LCST of poly(NIPAm), the gradual conformational change offers a variation of the temperature-dependent properties in comparison to poly(NIPAm), which displays a sharp coil-to-globule transition. Importantly, the compacted form of the glycopolymers shows a larger colloidal stability compared to the unmodified poly(NIPAm). In addition, the thermoresponsiveness can be conveniently tuned by varying the sugar unit-length and the oligo-ß-mannosyl ethyl methacrylate content.


Subject(s)
Acrylamides , Methacrylates , Scattering, Small Angle , Temperature , X-Ray Diffraction
10.
ACS Appl Mater Interfaces ; 13(16): 19099-19108, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33856185

ABSTRACT

Rechargeable batteries that use redox-active organic compounds are currently considered an energy storage technology for the future. Functionalizing redox-active groups onto conducting polymers to make conducting redox polymers (CRPs) can effectively solve the low conductivity and dissolution problems of redox-active compounds. Here, we employ a solution-processable postdeposition polymerization (PDP) method, where the rearrangements ensured by partial dissolution of intermediated trimer during polymerization were found significant to produce high-performance CRPs. We show that quinizarin (Qz)- and naphthoquinone (NQ)-based CRPs can reach their theoretical capacity through optimization of the polymerization conditions. Combining the two CRPs, with the Qz-CRP as a cathode, the NQ-CRP as an anode, and a protic ionic liquid electrolyte, yields a 0.8 V proton rocking-chair battery. The conducting additive-free all-organic proton battery exhibits a capacity of 62 mAh/g and a capacity retention of 80% after 500 cycles using rapid potentiostatic charging and galvanostatic discharge at 4.5 C.

11.
J Colloid Interface Sci ; 581(Pt B): 669-681, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32814190

ABSTRACT

HYPOTHESIS: Colloidal particles that interact via a long-ranged repulsive barrier in combination with a very short-ranged attractive minimum can "polymerize" to form highly anisotropic structures. Motivated by previous experimental achievements in non-aqueous solvents, and recent theoretical predictions, we hypothesize that it is possible to construct clusters that resemble linear or branched polymers, in aqueous solution. If these clusters are not too large, they may even remain dispersed, but even if they grow large enough to sediment, they may be collected and used in future applications. EXPERIMENTS: In this work, we specifically synthesize poly (ethylene glycol) (PEG) chains, grafted onto poly (styrene) (PS) particles in aqueous solution, and adjust the conditions so that strongly anisotropic and isolated polymer-like clusters are formed. These conditions include a very low ionic strength (the particles are weakly charged), a relatively high temperature, and a low particle concentration. An important criterion is that the particle size is large enough to admit structural analyses via confocal laser scanning microscopy (CLSM). We have furthermore utilized Metropolis Monte Carlo (MC) simulation to generate theoretical predictions of these cluster formations. We have conducted such simulations of 3D as well as 2D systems, where the latter is also relevant, given that the clusters sometimes deposit onto the glass surfaces upon imaging. A simplistic particle-particle potential of mean force is adopted for the simulations, but we also invoke a more elaborate theoretical model, to demonstrate that similar interactions can be obtained when the grafted chains are treated explicitly. FINDINGS: According to our Zeta potential measurements, the particles indeed carry a weak negative charge, presumably due to ion specific adsorption. Furthermore, by ensuring that the ionic strength is very low, with a Debye length similar to the particle size, we could use temperature to control the hydrophobicity of the grafted PEG layer, and thus the strength of the short-ranged attraction. We were indeed able to establish highly anisotropic structures, that resemble linear or branched polymers, which we could image by CLSM. The average degree of polymerization could be adjusted by a variation of the particle concentration.

12.
Biomacromolecules ; 22(2): 640-648, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33307669

ABSTRACT

We have prepared a series of 12 d-isosorbide-2-alkanoate-5-methacrylate monomers as single regioisomers with different pendant linear C2-C20 alkanoyl chains using biocatalytic and chemical acylations. By conventional radical polymerization, these monomers provided high-molecular-weight biobased poly(alkanoyl isosorbide methacrylate)s (PAIMAs). Samples with C2-C12 alkanoyl chains were amorphous with glass transition temperatures from 107 to 54 °C, while C14-C20 chains provided semicrystalline materials with melting points up to 59 °C. Moreover, PAIMAs with C13-C20 chains formed liquid crystalline mesophases with transition temperatures up to 93 °C. The mesophases were studied using polarized optical microscopy, and rheology showed stepwise changes of the viscosity at the transition temperature. Unexpectedly, a PAIMA prepared from a regioisomeric monomer (C18) showed semicrystallinity but not liquid crystallinity. Consequently, the properties of the PAIMAs were readily tunable by controlling the phase structure and transitions through the alkanoyl chain length and the regiochemistry to form fully amorphous, semicrystalline, or semi/liquid crystalline materials.


Subject(s)
Isosorbide , Liquid Crystals , Methacrylates , Polymerization , Viscosity
13.
Macromolecules ; 53(12): 4722-4732, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32905320

ABSTRACT

Different anion-exchange membranes (AEMs) based on polystyrene (PS)-carrying benzyltrimethyl ammonium cations are currently being developed for use in alkaline fuel cells and water electrolyzers. However, the stability in relation to these state-of-the-art cations needs to be further improved. Here, we introduce highly alkali-stable mono- and spirocyclic piperidine-based cations onto PS by first performing a superacid-mediated Friedel-Crafts alkylation using 2-(piperidine-4-yl)propane-2-ol. This is followed by quaternization of the piperidine rings either using iodomethane to produce N,N-dimethyl piperidinium cations or by cyclo-quaternizations using 1,5-dibromopentane and 1,4-dibromobutane, respectively, to obtain N-spirocyclic quaternary ammonium cations. Thus, it is possible to functionalize up to 27% of the styrene units with piperidine rings and subsequently achieve complete quaternization. The synthetic approach ensures that all of the sensitive ß-hydrogens of the cations are present in ring structures to provide high stability. AEMs based on these polymers show high alkaline stability and less than 5% ionic loss was observed by 1H NMR spectroscopy after 30 days in 2 M aq NaOH at 90 °C. AEMs functionalized with N,N-dimethyl piperidinium cations show higher stability than the ones carrying N-spirocyclic quaternary ammonium. Careful analysis of the latter revealed that the rings formed in the cyclo-quaternization are more prone to degrade via Hofmann elimination than the rings introduced in the Friedel-Crafts reaction. AEMs with an ion-exchange capacity of 1.5 mequiv g-1 reach a hydroxide conductivity of 106 mS cm-1 at 80 °C under fully hydrated conditions. The AEMs are further tuned and improved by blending with polybenzimidazole (PBI). For example, an AEM containing 2 wt % PBI shows reduced water uptake and much improved robustness during handling and reaches 71 mS cm-1 at 80 °C. The study demonstrates that the critical alkaline stability of PS-containing AEMs can be significantly enhanced by replacing the benchmark benzyltrimethyl ammonium cations with N-alicyclic piperidine-based cations.

14.
ACS Macro Lett ; 8(10): 1247-1251, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-35651144

ABSTRACT

We report on the straightforward metal-free synthesis of poly(p-terphenyl perfluorophenylsulfonic acid)s by efficient superacid-catalyzed Friedel-Crafts polycondensations of commercially available perfluoroacetophenone and p-terphenyl, followed by sulfonation of the pendant pentafluorophenyl groups via a selective and quantitative thiolation-oxidation procedure. The stiff and well-defined polymer structure with precisely sequenced and highly acidic units induces efficient ionic clustering, restricted water uptake and swelling, excellent resistance against radical attack, and very high proton conductivity. At 120 °C, the conductivity reaches 40 and 232 mS cm-1 at 50 and 90% relative humidity, respectively, which very closely matches the benchmark Nafion NR212 membrane. The properties are further tuned by copolymerizations. Overall, the results demonstrate that these materials possess a very attractive combination of characteristics for use as high-performance proton-exchange membranes for fuel cells and water electrolyzers.

15.
ACS Omega ; 4(26): 21818-21826, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31891059

ABSTRACT

Vapor phase polymerization (VPP) is used to fabricate a series of tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes on carbon paper. The series of VPP PEDOT/tosylate coatings has varying levels of crystallinity and electrical conductivity because of the use (or not) of nonionic triblock copolymers in the oxidant solution during synthesis. As a result, the impact of the structure on charge storage capacity is investigated using tetra-n-butylammonium hexafluorophosphate (0.1 M in acetonitrile). The ability to insert anions, and hence store charge, of the VPP PEDOT/tosylate is inversely related to its electrical conductivity. In the case of no nonionic triblock copolymer employed, the VPP PEDOT/tosylate achieves electrochemical doping levels of 1.0 charge per monomer or greater (≥100% doping level). Such high doping levels are demonstrated to be plausible by molecular dynamics simulations and density functional theory calculations. Experiments show that this high doping level is attainable when the PEDOT structure is weakly crystalline with (relatively) large crystallite domains.

16.
Polymers (Basel) ; 11(1)2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30960019

ABSTRACT

Hemicellulose is a promising renewable raw material for the production of hydrogels. This polysaccharide exists in large amounts in various waste streams, in which they are usually impure and heavily diluted. Several downstream processing methods can be combined to concentrate and purify the hemicellulose. However, such an approach can be costly; hence, the effect of impurities on the formation and properties of hydrogels must be determined. Lignin usually exists in these waste streams as a major impurity that is also difficult to separate. This compound can darken hydrogels and decrease their swellability and reactivity, as shown in many studies. Other properties and effects of lignin impurities are equally important for the end application of hydrogels and the overall process economy. In this work, we examined the feasibility of producing hydrogels from hemicelluloses that originated from sodium-based spent sulfite liquor. A combination of membrane filtration and anti-solvent precipitation was used to extract and purify various components. The influence of the purity of hemicellulose and the addition of lignosulfonates (emulated impurities in the downstream processing) to the crosslinking reaction mixture on the mechanical, thermal, and chemical properties of hydrogels was determined.

17.
J Am Chem Soc ; 139(8): 2888-2891, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28192665

ABSTRACT

The development of cationic polymers for anion-exchange membranes (AEMs) with high alkaline stability and conductivity is a considerable challenge in materials chemistry. In response, we here present the synthesis and properties of N-spirocyclic quaternary ammonium ionenes (spiro-ionenes) containing 5- and 6-membered rings fused by central nitrogen cations. High-molecular weight and film-forming spiro-ionenes are successfully synthesized in cyclo-polycondensations of tetrakis(bromomethyl)benzene and dipiperidines under mild conditions. These polyelectrolytes show excellent thermal and alkaline stability with no degradation detected by NMR spectroscopy after more than 1800 h in 1 M KOD/D2O at 80 °C. Even at 120 °C, the spiro-ionenes display reasonable alkaline stability. Transparent and mechanically robust AEMs based on ionically cross-linked blends of spiro-ionene and polybenzimidazole reach OH- conductivities up to 0.12 S cm-1 at 90 °C. The current findings demonstrate that spiro-ionenes constitute a new class of alkali-stable anion-exchange polymers and membranes.

18.
ACS Macro Lett ; 4(12): 1370-1375, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-35614785

ABSTRACT

We have prepared and studied a new class of anion-conducting membrane materials functionalized with N-spirocyclic quaternary ammonium (QA) cations formed via cycloquaternization reactions involving pyrrolidine, piperidine, and azepane, respectively. These cations were introduced in pairs, adjoined through fused phenyl rings along poly(arylene ether sulfone) backbones. Despite their bulkiness, the bis-N-spirocyclic QA moieties efficiently formed ionic clusters in anion-exchange membranes (AEMs) and showed thermal stability up to 309 °C, as well as a reasonable alkaline stability. The hydroxide ion conductivity of the AEMs increased with decreasing ring size, and a fully hydrated pyrrolidine-based AEM reached a conductivity of 110 mS cm-1 at 80 °C. The results of this study indicate new synthetic pathways to high-performance AEMs based on N-spirocyclic QA groups.

19.
ChemSusChem ; 7(9): 2621-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25044778

ABSTRACT

A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells.


Subject(s)
Membranes, Artificial , Polymers/chemistry , Quaternary Ammonium Compounds/chemistry , Sulfones/chemistry , Ion Exchange , Temperature , Water/chemistry
20.
J Phys Chem B ; 117(28): 8561-70, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23777322

ABSTRACT

The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.


Subject(s)
Fluorocarbon Polymers/chemistry , Steam , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...