Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38015181

ABSTRACT

Due to excellent gas sensing performances, such as high responsivity, good selectivity, and long-term stability, two-dimensional (2D) nonlayered metal oxide semiconductors have attracted wide attention. However, their thickness-dependent gas sensing behaviors are rarely investigated, which is critical in the development of practical 2D sensors. In this work, 2D In2O3 crystals with a range of thicknesses are realized by extracting the self-limited oxide layer from the liquid indium droplets in a controlled environment. A strong thickness-dependent optoelectronic NO2 sensing behavior at room temperature is observed. While full reversibility and excellent selectivity toward NO2 are shown despite the thicknesses of 2D In2O3, the 1.9 nm thick In2O3 exhibits a maximum response amplitude (ΔI/Ig = 1300) for 10 ppm of NO2 at room temperature with 365 nm light irradiation, which is about 18, 58, and 810 times larger than those of its 3.1 nm thick, 4.5 nm thick, and 6.2 nm thick counterparts, respectively. The shortest response and recovery times (i.e., 40 s/48 s) are demonstrated for the 1.88 nm thick In2O3 as well. We correlate such a phenomenon with the change in the In2O3 band structure, which is influenced by the thickness of 2D crystals. This work provides in-depth knowledge of the thickness-dependent gas-sensing performances of emerging 2D nonlayered metal oxide crystals, as well as the opportunities to develop next-generation high-performing room-temperature gas sensors.

2.
ACS Nano ; 16(4): 5476-5486, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35377615

ABSTRACT

Indium nitride (InN) has been of significant interest for creating and studying two-dimensional electron gases (2DEG). Herein we demonstrate the formation of 2DEGs in ultrathin doped and undoped 2D InN nanosheets featuring high carrier mobilities at room temperature. The synthesis is carried out via a two-step liquid metal-based printing method followed by a microwave plasma-enhanced nitridation reaction. Ultrathin InN nanosheets with a thickness of ∼2 ± 0.2 nm were isolated over large areas with lateral dimensions exceeding centimeter scale. Room temperature Hall effect measurements reveal carrier mobilities of ∼216 and ∼148 cm2 V-1 s-1 for undoped and doped InN, respectively. Further analysis suggests the presence of defined quantized states in these ultrathin nitride nanosheets that can be attributed to a 2D electron gas forming due to strong out-of-plane confinement. Overall, the combination of electronic and plasmonic features in undoped and doped ultrathin 2D InN holds promise for creating advanced optoelectronic devices and functional 2D heterostructures.

3.
J Colloid Interface Sci ; 610: 304-312, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34922081

ABSTRACT

Metal-organic frameworks (MOFs) with exceptional features such as high structural diversity and surface area as well as controlled pore size has been considered a promising candidate for developing room temperature highly-sensitive gas sensors. In comparison, the hetero-metallic MOFs with redox-active open-metal sites and mixed metal nodes may create peculiar surface properties and synergetic effects for enhanced gas sensing performances. In this work, the Fe atoms in the Fe3 (Porous coordination network) PCN-250 MOFs are partially replaced by transition metal Co, Mn, and Zn through a facile hydrothermal approach, leading to the formation of hetero-metallic MOFs (Fe2IIIMII, M = Co, Mn, and Zn). While the PCN-250 framework is maintained, the morphological and electronic band structural properties are manipulated upon the partial metal replacement of Fe. More importantly, the room temperature NO2 sensing performances are significantly varied, in which Fe2Mn PCN-250 demonstrates the largest response magnitude for ppb-level NO2 gas compared to those of pure Fe3 PCN-250 and other hetero-metallic MOF structures mainly attributed to the highest binding energy of NO2 gas. This work demonstrates the strong potential of hetero-metallic MOFs with carefully engineered substituted metal clusters for power-saving and high-performance gas sensing applications.

4.
ACS Nano ; 15(10): 16067-16075, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34623147

ABSTRACT

High dielectric constant (high-k) ultrathin films are required as insulating gate materials. The well-known high-k dielectrics, including HfO2, ZrO2, and SrTiO3, feature three-dimensional lattice structures and are thus not easily obtained in the form of distinct ultrathin sheets. Therefore, their deposition as ultrathin layers still imposes challenges for electronic industries. Consequently, new high-k nanomaterials with k in the range of 40 to 100 and a band gap exceeding 4 eV are highly sought after. Antimony oxide nanosheets appear as a potential candidate that could fulfill these characteristics. Here, we report on the stoichiometric cubic polymorph of 2D antimony oxide (Sb2O3) as an ideal high-k dielectric sheet that can be synthesized via a low-temperature, substrate-independent, and silicon-industry-compatible liquid metal synthesis technique. A bismuth-antimony alloy was produced during the growth process. Preferential oxidation caused the surface of the melt to be dominated by α-Sb2O3. This ultrathin α-Sb2O3 was then deposited onto desired surfaces via a liquid metal print transfer. A tunable sheet thickness between ∼1.5 and ∼3 nm was achieved, while the lateral dimensions were within the millimeter range. The obtained α-Sb2O3 exhibited high crystallinity and a wide band gap of ∼4.4 eV. The relative permittivity assessment revealed a maximum k of 84, while a breakdown electric field of ∼10 MV/cm was observed. The isolated 2D α-Sb2O3 nanosheets were utilized in top-gated field-effect transistors that featured low leakage currents, highlighting that the obtained material is a promising gate oxide for conventional and van der Waals heterostructure-based electronics.

5.
ACS Nano ; 15(3): 4045-4053, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33496575

ABSTRACT

Ultrathin transparent conductive oxides (TCOs) are emerging candidates for next-generation transparent electronics. Indium oxide (In2O3) incorporated with post-transition-metal ions (e.g., Sn) has been widely studied due to their excellent optical transparency and electrical conductivity. However, their electron transport properties are deteriorated at the ultrathin two-dimensional (2D) morphology compared to that of intrinsic In2O3. Here, we explore the domain of transition-metal dopants in ultrathin In2O3 with the thicknesses down to the single-unit-cell limit, which is realized in a large area using a low-temperature liquid metal printing technique. Zn dopant is selected as a representative to incorporate into the In2O3 rhombohedral crystal framework, which results in the gradual transition of the host to quasimetallic. While the optical transmittance is maintained above 98%, an electron field-effect mobility of up to 87 cm2 V-1 s-1 and a considerable sub-kΩ-1 cm-1 ranged electrical conductivity are achieved when the Zn doping level is optimized, which are in a combination significantly improved compared to those of reported ultrathin TCOs. This work presents various opportunities for developing high-performance flexible transparent electronics based on emerging ultrathin TCO candidates.

6.
Nat Mater ; 20(8): 1073-1078, 2021 08.
Article in English | MEDLINE | ID: mdl-33462466

ABSTRACT

Two-dimensional (2D) crystals are promising materials for developing future nano-enabled technologies1-6. The cleavage of weak, interlayer van der Waals bonds in layered bulk crystals enables the production of high-quality 2D, atomically thin monolayers7-10. Nonetheless, as earth-abundant compounds, metal oxides are rarely accessible as pure and fully stoichiometric monolayers owing to their ion-stabilized 'lamellar' bulk structure11-14. Here, we report the discovery of a layered planar hexagonal phase of oxides from elements across the transition metals, post-transition metals, lanthanides and metalloids, derived from strictly controlled oxidation at the metal-gas interface. The highly crystalline monolayers, without the support of ionic dopants or vacancies, can easily be mechanically exfoliated by stamping them onto substrates. Monolayer and few-layered hexagonal TiO2 are characterized as examples, showing p-type semiconducting properties with hole mobilities of up to 950 cm2 V-1 s-1 at room temperature. The strategy can be readily extended to a variety of elements, possibly expanding the exploration of metal oxides in the 2D quantum regime.

7.
J Colloid Interface Sci ; 588: 305-314, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33412351

ABSTRACT

Metal-organic frameworks (MOFs) nanocomposites are under the limelight due to their unique electronic, optical, and surface properties for various applications. Plasmonic MOFs enabled by noble metal nanostructures are an emerging class of MOF nanocomposites with efficient solar light-harvesting capability. However, major concerns such as poor photostability, sophisticated synthesis processes, and high fabrication cost are raised. Here, we develop a novel plasmonic MOF nanocomposite consisting of the ultra-thin degenerately doped molybdenum oxide core and the flexible iron MOF (FeMOF) shell through a hydrothermal growth, featuring low cost, facile synthesis, and non-toxicity. More importantly, the incorporation of plasmonic oxides in the highly porous MOF structure enhances the visible light absorbability, demonstrating improved photobleaching performances of various azo and non-azo dyes compared to that of pure FeMOF without the incorporation of oxidative agents. Furthermore, the nanocomposite exhibits enhanced sensitivity and selectivity towards NO2 gas at room temperature, attributed to the electron-rich surface of plasmonic oxides. This work possibly broadens the exploration of plasmonic MOF nanocomposites for practical and efficient solar energy harvesting, environmental remediation, and environmental monitoring applications.

8.
Chem Commun (Camb) ; 56(36): 4914-4917, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32239030

ABSTRACT

The library of true two-dimensional materials is limited since many transition metal compounds are not stratified and can thus not be easily isolated as nanosheets. Here, micron-sized ultrathin rutile TiO2 nanosheets featuring uniform thickness (2 ± 0.5 nm) with dielectric constant (ε⊥ = 24) have been synthesized via a liquid metal synthesis strategy.

9.
Nanomicro Lett ; 12(1): 66, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-34138280

ABSTRACT

Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices. The synthesis of two-dimensional materials in wafer scales is the first critical step for future technology uptake by the industries; however, currently presented as a significant challenge. Substantial efforts have been devoted to producing atomically thin two-dimensional materials with large lateral dimensions, controllable and uniform thicknesses, large crystal domains and minimum defects. In this review, recent advances in synthetic routes to obtain high-quality two-dimensional crystals with lateral sizes exceeding a hundred micrometres are outlined. Applications of the achieved large-area two-dimensional crystals in electronics and optoelectronics are summarised, and advantages and disadvantages of each approach considering ease of the synthesis, defects, grain sizes and uniformity are discussed.

10.
ACS Appl Mater Interfaces ; 11(45): 42462-42468, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31622081

ABSTRACT

Excitation wavelength-dependent photoluminescence (PL) in two-dimensional (2D) transition-metal chalcogenides enables a strong excitonic interaction for high-performance chemical and biological sensing applications. In this work, we explore the possible candidates in the domain of post-transition-metal chalcogenides. Few-layered 2D p-type tin monosulfide (SnS) nanoflakes with submicrometer lateral dimensions are synthesized from the liquid phase exfoliation of bulk crystals. Excitation wavelength-dependent PL is found, and the excitonic radiative lifetime is more than one order enhanced compared to that of the bulk counterpart because of the quantum confinement effect. Paramagnetic NO2 gas is selected as a representative to investigate the exciton-driven chemical-sensing properties of 2D SnS. Physisorption of NO2 results in the formation of dipoles on the surface of 2D SnS, causing the redistribution of photoexcited charges in the body and therefore modifying PL properties. For practical sensing applications, 2D SnS is integrated into a resistive transducing platform. Under light irradiation, the sensor exhibits excellent sensitivity and selectivity to NO2 at a relatively low operating temperature of 60 °C. The limit of detection is 17 parts per billion (ppb), which is significantly improved over other previously reported 2D p-type semiconductor-based NO2 sensors.

11.
Small ; 15(9): e1805251, 2019 03.
Article in English | MEDLINE | ID: mdl-30677221

ABSTRACT

Silicon photonics has demonstrated great potential in ultrasensitive biochemical sensing. However, it is challenging for such sensors to detect small ions which are also of great importance in many biochemical processes. A silicon photonic ion sensor enabled by an ionic dopant-driven plasmonic material is introduced here. The sensor consists of a microring resonator (MRR) coupled with a 2D restacked layer of near-infrared plasmonic molybdenum oxide. When the 2D plasmonic layer interacts with ions from the environment, a strong change in the refractive index results in a shift in the MRR resonance wavelength and simultaneously the alteration of plasmonic absorption leads to the modulation of MRR transmission power, hence generating dual sensing outputs which is unique to other optical ion sensors. Proof-of-concept via a pH sensing model is demonstrated, showing up to 7 orders improvement in sensitivity per unit area across the range from 1 to 13 compared to those of other optical pH sensors. This platform offers the unique potential for ultrasensitive and robust measurement of changes in ionic environment, generating new modalities for on-chip chemical sensors in the micro/nanoscale.

12.
J Am Chem Soc ; 141(1): 104-108, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30571094

ABSTRACT

We report the synthesis of centimeter sized ultrathin GaN and InN. The synthesis relies on the ammonolysis of liquid metal derived two-dimensional (2D) oxide sheets that were squeeze-transferred onto desired substrates. Wurtzite GaN nanosheets featured typical thicknesses of 1.3 nm, an optical bandgap of 3.5 eV and a carrier mobility of 21.5 cm2 V-1 s-1, while the InN featured a thickness of 2.0 nm. The deposited nanosheets were highly crystalline, grew along the (001) direction and featured a thickness of only three unit cells. The method provides a scalable approach for the integration of 2D morphologies of industrially important semiconductors into emerging electronics and optical devices.

13.
ACS Appl Mater Interfaces ; 10(49): 42603-42611, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30426735

ABSTRACT

The family of crystals constituting covalently bound strings, held together by van der Waals forces, can be exfoliated into smaller entities, similar to crystals made of van der Waals sheets. Depending on the anisotropy of such crystals, as well as the spacing between their strings in each direction, van der Waals sheets or ribbons can be obtained after the exfoliation process. In this work, we demonstrate that ultrathin nanoribbons of bismuth sulfide (Bi2S3) can be synthesized via a high-power sonication process. The thickness and width of these ribbons are governed by the van der Waals spacings around the strings within the parent crystal. The lengths of the nanoribbons are initially limited by the dimensions of the starting bulk particles. Interestingly, these nanoribbons change stoichiometry and composition and are elongated when the duration of agitation increases because of Ostwald ripening. An application of the exfoliated van der Waals strings is presented for optical biosensing using photoluminescence of Bi2S3 nanoribbons, reaching detection limits of less than 10 nM L-1 in response to bovine serum albumin. The concept of exfoliating van der Waals strings could be extended to a large class of crystals for creating bodies ranging from sheets to strings, with optoelectronic properties different from that of their bulk counterparts.

14.
Nat Commun ; 9(1): 3618, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190463

ABSTRACT

Two-dimensional piezotronics will benefit from the emergence of new crystals featuring high piezoelectric coefficients. Gallium phosphate (GaPO4) is an archetypal piezoelectric material, which does not naturally crystallise in a stratified structure and hence cannot be exfoliated using conventional methods. Here, we report a low-temperature liquid metal-based two-dimensional printing and synthesis strategy to achieve this goal. We exfoliate and surface print the interfacial oxide layer of liquid gallium, followed by a vapour phase reaction. The method offers access to large-area, wide bandgap two-dimensional (2D) GaPO4 nanosheets of unit cell thickness, while featuring lateral dimensions reaching centimetres. The unit cell thick nanosheets present a large effective out-of-plane piezoelectric coefficient of 7.5 ± 0.8 pm V-1. The developed printing process is also suitable for the synthesis of free standing GaPO4 nanosheets. The low temperature synthesis method is compatible with a variety of electronic device fabrication procedures, providing a route for the development of future 2D piezoelectric materials.

15.
Nanoscale ; 10(33): 15615-15623, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30090912

ABSTRACT

Atomically thin, semiconducting transition and post transition metal oxides are emerging as a promising category of materials for high-performance oxide optoelectronic applications. However, the wafer-scale synthesis of crystalline atomically thin samples has been a challenge, particularly for oxides that do not present layered crystal structures. Herein we use a facile, scalable method to synthesise ultrathin bismuth oxide nanosheets using a liquid metal facilitated synthesis approach. Monolayers of α-Bi2O3 featuring sub-nanometre thickness, high crystallinity and large lateral dimensions could be isolated from the liquid bismuth surface. The nanosheets were found to be n-type semiconductors with a direct band gap of ∼3.5 eV and were suited for developing ultra violet (UV) photodetectors. The developed devices featured a high responsivity of ∼400 AW-1 when illuminated with 365 nm UV light and fast response times of ∼70 µs. The developed methods and obtained nanosheets can likely be developed further towards the synthesis of other bismuth based atomically thin chalcogenides that hold promise for electronic, optical and catalytic applications.

16.
J Nanosci Nanotechnol ; 18(2): 1274-1278, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29448573

ABSTRACT

In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.

SELECTION OF CITATIONS
SEARCH DETAIL
...