Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(2)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35203449

ABSTRACT

Macrophages (MΦ) are highly heterogenous and versatile innate immune cells involved in homeostatic and immune responses. Activated MΦ can exist in two extreme phenotypes: pro-inflammatory (M1) MΦ and anti-inflammatory (M2) MΦ. These phenotypes can be recapitulated in vitro by using ligands of toll-like receptors (TLRs) and cytokines such as IFNγ and IL-4. In recent years, human induced pluripotent stem cells (iPSC)-derived MΦ have gained major attention, as they are functionally similar to human monocyte-derived MΦ and are receptive to genome editing. In this study, we polarised iPSC-derived MΦ to M1 or M2 and analysed their proteome and secretome profiles using quantitative proteomics. These comprehensive proteomic data sets provide new insights into functions of polarised MΦ.

2.
Front Cell Dev Biol ; 9: 656867, 2021.
Article in English | MEDLINE | ID: mdl-33937256

ABSTRACT

Macrophages are pivotal effectors of host immunity and regulators of tissue homeostasis. Understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (hiPSC)-derived monocytes and macrophages, as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of macrophage biology and implication in human diseases. In this study, we present a fully optimized differentiation protocol of hiPSC-derived monocytes and granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). We present characterization of iPSC-derived myeloid lineage cells at phenotypic, functional, and transcriptomic levels, in comparison with corresponding subsets of peripheral blood-derived cells. We also highlight the application of hiPSC-derived monocytes and macrophages as a gene-editing platform for functional validation in research and drug screening, and the study also provides a reference for cell therapies.

3.
Brain ; 137(Pt 1): 137-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24277719

ABSTRACT

Proteins of the ProSAP/Shank family act as major organizing scaffolding elements within the postsynaptic density of excitatory synapses. Deletions, mutations or the downregulation of these molecules has been linked to autism spectrum disorders, the related Phelan McDermid Syndrome or Alzheimer's disease. ProSAP/Shank proteins are targeted to synapses depending on binding to zinc, which is a prerequisite for the assembly of the ProSAP/Shank scaffold. To gain insight into whether the previously reported assembly of ProSAP/Shank through zinc ions provides a crossing point between genetic forms of autism spectrum disorder and zinc deficiency as an environmental risk factor for autism spectrum disorder, we examined the interplay between zinc and ProSAP/Shank in vitro and in vivo using neurobiological approaches. Our data show that low postsynaptic zinc availability affects the activity dependent increase in ProSAP1/Shank2 and ProSAP2/Shank3 levels at the synapse in vitro and that a loss of synaptic ProSAP1/Shank2 and ProSAP2/Shank3 occurs in a mouse model for acute and prenatal zinc deficiency. Zinc-deficient animals displayed abnormalities in behaviour such as over-responsivity and hyperactivity-like behaviour (acute zinc deficiency) and autism spectrum disorder-related behaviour such as impairments in vocalization and social behaviour (prenatal zinc deficiency). Most importantly, a low zinc status seems to be associated with an increased incidence rate of seizures, hypotonia, and attention and hyperactivity issues in patients with Phelan-McDermid syndrome, which is caused by haploinsufficiency of ProSAP2/Shank3. We suggest that the molecular underpinning of prenatal zinc deficiency as a risk factor for autism spectrum disorder may unfold through the deregulation of zinc-binding ProSAP/Shank family members.


Subject(s)
Child Development Disorders, Pervasive/metabolism , Saposins/metabolism , Synapses/physiology , Zinc/deficiency , Animals , Attention Deficit Disorder with Hyperactivity/physiopathology , Behavior, Animal/physiology , Blotting, Western , Cells, Cultured , Child Development Disorders, Pervasive/physiopathology , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 22/metabolism , Female , Hippocampus/metabolism , Humans , Immunohistochemistry , Mice , Organ Culture Techniques , Pregnancy , RNA, Small Interfering/genetics , Rats , Real-Time Polymerase Chain Reaction , Spectrometry, Fluorescence , Transfection , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...