Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 13(1): 7173, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36450725

ABSTRACT

Borrelia burgdorferi, the tick-transmitted spirochete agent of Lyme disease, has a highly segmented genome with a linear chromosome and various linear or circular plasmids. Here, by imaging several chromosomal loci and 16 distinct plasmids, we show that B. burgdorferi is polyploid during growth in culture and that the number of genome copies decreases during stationary phase. B. burgdorferi is also polyploid inside fed ticks and chromosome copies are regularly spaced along the spirochete's length in both growing cultures and ticks. This patterning involves the conserved DNA partitioning protein ParA whose localization is controlled by a potentially phage-derived protein, ParZ, instead of its usual partner ParB. ParZ binds its own coding region and acts as a centromere-binding protein. While ParA works with ParZ, ParB controls the localization of the condensin, SMC. Together, the ParA/ParZ and ParB/SMC pairs ensure faithful chromosome inheritance. Our findings underscore the plasticity of cellular functions, even those as fundamental as chromosome segregation.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Humans , Borrelia burgdorferi/genetics , Polyploidy , DNA , Lyme Disease/genetics , Chromosome Segregation
3.
Science ; 362(6415): 705-709, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30409885

ABSTRACT

We describe a general computational approach to designing self-assembling helical filaments from monomeric proteins and use this approach to design proteins that assemble into micrometer-scale filaments with a wide range of geometries in vivo and in vitro. Cryo-electron microscopy structures of six designs are close to the computational design models. The filament building blocks are idealized repeat proteins, and thus the diameter of the filaments can be systematically tuned by varying the number of repeat units. The assembly and disassembly of the filaments can be controlled by engineered anchor and capping units built from monomers lacking one of the interaction surfaces. The ability to generate dynamic, highly ordered structures that span micrometers from protein monomers opens up possibilities for the fabrication of new multiscale metamaterials.


Subject(s)
Computational Biology/methods , Protein Engineering/methods , Proteins/chemistry , Cryoelectron Microscopy , Escherichia coli , Protein Conformation, alpha-Helical , Protein Folding , Protein Structure, Secondary , Proteins/genetics
4.
PLoS Genet ; 13(8): e1006978, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28827812

ABSTRACT

To achieve robust replication, bacteria must integrate cellular metabolism and cell wall growth. While these two processes have been well characterized, the nature and extent of cross-regulation between them is not well understood. Here, using classical genetics, CRISPRi, metabolomics, transcriptomics and chemical complementation approaches, we show that a loss of the master regulator Hfq in Caulobacter crescentus alters central metabolism and results in cell shape defects in a nutrient-dependent manner. We demonstrate that the cell morphology phenotype in the hfq deletion mutant is attributable to a disruption of α-ketoglutarate (KG) homeostasis. In addition to serving as a key intermediate of the tricarboxylic acid (TCA) cycle, KG is a by-product of an enzymatic reaction required for the synthesis of peptidoglycan, a major component of the bacterial cell wall. Accumulation of KG in the hfq deletion mutant interferes with peptidoglycan synthesis, resulting in cell morphology defects and increased susceptibility to peptidoglycan-targeting antibiotics. This work thus reveals a direct crosstalk between the TCA cycle and cell wall morphogenesis. This crosstalk highlights the importance of metabolic homeostasis in not only ensuring adequate availability of biosynthetic precursors, but also in preventing interference with cellular processes in which these intermediates arise as by-products.


Subject(s)
Caulobacter crescentus/genetics , Cell Wall/genetics , Citric Acid Cycle/genetics , Host Factor 1 Protein/genetics , Caulobacter crescentus/growth & development , Cell Cycle/genetics , Cell Wall/metabolism , DNA Replication/genetics , Homeostasis , Ketoglutaric Acids/metabolism , Metabolomics , Peptidoglycan/biosynthesis , Peptidoglycan/genetics , Sequence Deletion/genetics , Transcriptome/genetics
5.
BMC Genomics ; 13: 559, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23075437

ABSTRACT

BACKGROUND: Small RNAs have proven to be essential regulatory molecules encoded within eukaryotic genomes. These short RNAs participate in a diverse array of cellular processes including gene regulation, chromatin dynamics and genome defense. The tammar wallaby, a marsupial mammal, is a powerful comparative model for studying the evolution of regulatory networks. As part of the genome sequencing initiative for the tammar, we have explored the evolution of each of the major classes of mammalian small RNAs in an Australian marsupial for the first time, including the first genome-scale analysis of the newest class of small RNAs, centromere repeat associated short interacting RNAs (crasiRNAs). RESULTS: Using next generation sequencing, we have characterized the major classes of small RNAs, micro (mi) RNAs, piwi interacting (pi) RNAs, and the centromere repeat associated short interacting (crasi) RNAs in the tammar. We examined each of these small RNA classes with respect to the newly assembled tammar wallaby genome for gene and repeat features, salient features that define their canonical sequences, and the constitution of both highly conserved and species-specific members. Using a combination of miRNA hairpin predictions and co-mapping with miRBase entries, we identified a highly conserved cluster of miRNA genes on the X chromosome in the tammar and a total of 94 other predicted miRNA producing genes. Mapping all miRNAs to the tammar genome and comparing target genes among tammar, mouse and human, we identified 163 conserved target genes. An additional nine genes were identified in tammar that do not have an orthologous miRNA target in human and likely represent novel miRNA-regulated genes in the tammar. A survey of the tammar gonadal piRNAs shows that these small RNAs are enriched in retroelements and carry members from both marsupial and tammar-specific repeat classes. Lastly, this study includes the first in-depth analyses of the newly discovered crasiRNAs. These small RNAs are derived largely from centromere-enriched retroelements, including a novel SINE. CONCLUSIONS: This study encompasses the first analyses of the major classes of small RNAs for the newly completed tammar genome, validates preliminary annotations using deep sequencing and computational approaches, and provides a foundation for future work on tammar-specific as well as conserved, but previously unknown small RNA progenitors and targets identified herein. The characterization of new miRNA target genes and a unique profile for crasiRNAs has allowed for insight into multiple RNA mediated processes in the tammar, including gene regulation, species incompatibilities, centromere and chromosome function.


Subject(s)
Genome/genetics , Macropodidae/genetics , MicroRNAs/genetics , RNA, Small Nuclear/genetics , RNA, Small Untranslated/genetics , Animals , Base Sequence , Centromere/genetics , Chromatin/genetics , Chromosome Mapping , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Retroelements/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...