Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 79(8): 3148-54, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17343362

ABSTRACT

A procedure was developed to accurately measure the W isotopic compositions of iron meteorites with a precision of better than +/-0.1 epsilon on epsilon182W and epsilon184W (normalized to 186W/183W). Purification of W was achieved through a two-step, ion-exchange procedure. In most cases, the yield is better than 80%, and purified W solutions are clear of matrix elements and direct isobars of W. The final W solutions were analyzed using a Micromass Isoprobe multicollector inductively coupled plasma mass spectrometer (MC-ICPMS). Tests performed on mixtures of terrestrial standards and meteorite samples demonstrate that the method is accurate and that epsilon182W variations as small as approximately 0.1 epsilon can be detected. Analyses of three different aliquots of the Gibeon (IVA) iron meteorite obtained over a period of 6 months show identical epsilon182W values with a weighted mean of 3.38 +/- 0.05, consistent with literature data for IVA iron meteorites, and indicating that the metal-silicate differentiation event in its parent body was either contemporaneous with or slightly postdated (by up to approximately 2.5 My) the formation of refractory inclusions. We demonstrate our ability to measure epsilon184W accurately and precisely (within +/-0.1 epsilon), which is useful for characterizing cosmogenic and nucleosynthetic effects that may be present in iron meteorites. We also report for the first time measurements of epsilon180W, albeit with large error bars (<+/-4 epsilon, in most cases).

2.
Anal Chem ; 78(24): 8477-84, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17165842

ABSTRACT

We measured the Ni isotopic composition of metal from a variety of meteorite groups to search for variations in the 60Ni abundance from the decay of the short-lived nuclide 60Fe (t(1/2) = 1.49 My) and for possible nucleosynthetic effects in the other stable isotopes of Ni. We developed a high-yield Ni separation procedure based on a combination of anion and cation exchange chromatography. Nickel isotopes were measured on a single-focusing, multicollector, inductively coupled mass spectrometer (MC-ICPMS). The external precision on the mass-bias-corrected 60Ni/58Ni ratio (+/-0.15 epsilon; 2sigma) is comparable to similar studies using double-focusing MC-ICPMS. We report the first high-precision data for 64Ni, the least abundant Ni isotope, obtained via MC-ICPMS. The external precision on the mass-bias-corrected 64Ni/58Ni ratio (+/-1.5 epsilon; 2sigma) is better than previous studies using thermal ionization mass spectrometry. No resolvable excesses relative to a terrestrial standard in the mass-bias-corrected 60Ni/58Ni ratio were detected in any meteoritic metal samples. However, resolvable deficits in this ratio were measured in the metal from several unequilibrated chondrites, implying a 60Fe/56Fe ratio of approximately 1 x 10(-6) at the time of Fe/Ni fractionation in chondritic metal. A 60Fe/56Fe ratio of (4.6 +/- 3.3) x 10(-7) is inferred at the time of Fe/Ni fractionation on the parent bodies of magmatic iron meteorites and pallasites. No clearly resolvable non-mass-dependent anomalies were detected in the other stable isotopes of Ni in the samples investigated here, indicating that the Ni isotopic composition in the early solar system was homogeneous (at least at the level of precision reported here) at the time of meteoritic metal formation.

3.
Science ; 306(5704): 2077-80, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15604404

ABSTRACT

Archean rocks may provide a record of early Earth environments. However, such rocks have often been metamorphosed by high pressure and temperature, which can overprint the signatures of their original formation. Here, we show that the early Archean banded rocks from Isua, Akilia, and Innersuartuut, Greenland, are enriched in heavy iron isotopes by 0.1 to 0.5 per mil per atomic mass unit relative to igneous rocks worldwide. The observed enrichments are compatible with the transport, oxidation, and subsequent precipitation of ferrous iron emanating from hydrothermal vents and thus suggest that the original rocks were banded iron formations (BIFs). These variations therefore support a sedimentary origin for the Akilia banded rocks, which represent one of the oldest known occurrences of water-laid deposits on Earth.

4.
Anal Chem ; 76(19): 5855-63, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15456307

ABSTRACT

A procedure was developed that allows precise determination of Fe isotopic composition. Purification of Fe was achieved by ion chromatography on AG1-X8 strongly basic anion-exchange resin. No isotopic fractionation is associated with column chemistry within 0.02 per thousand /amu at 2sigma. The isotopic composition was measured with a Micromass IsoProbe multicollection inductively coupled plasma hexapole mass spectrometer. The Fe isotopic composition of the Orgueil CI1 carbonaceous chondrite, which best approximates the solar composition, is indistinguishable from that of IRMM-014 (-0.005 +/- 0.017 per thousand /amu). The IRMM-014 reference material is therefore used for normalization of the isotopic ratios. The protocol for analyzing mass-dependent variations is validated by measuring geostandards (IF-G, DTS-2, BCR-2, AGV-2) and heavily fractionated Fe left after vacuum evaporation of molten wüstite (FeO) and solar (MgO-Al(2)O(3)-SiO(2)-CaO-FeO in chondritic proportions) compositions. It is shown that the isotopic composition of Fe during evaporation of FeO follows a Rayleigh distillation with a fractionation factor alpha equal to (m(1)/m(2)()1/2), where m(1) and m(2) are the masses of the considered isotopes. This agrees with earlier measurements and theoretical expectations. The isotopic composition of Fe left after vacuum evaporation of solar composition also follows a Rayleigh distillation but with a fractionation factor (1.013 22 +/- 0.000 67 for the (56)Fe/(54)Fe ratio) that is lower than the square root of the masses (1.018 35). The protocol for analyzing mass-independent variations is validated by measuring terrestrial rocks that are not expected to show departure from mass-dependent fractionation. After internal normalization of the (57)Fe/(54)Fe ratio, the isotopic composition of Fe can be measured accurately with precisions of 0.2epsilon and 0.5epsilon at 2sigma for (56)Fe/(54)Fe and (58)Fe/(54)Fe ratios, respectively (epsilon refers to relative variations in parts per 10 000). For (58)Fe, this precision is an order of magnitude better than what had been achieved before. The method is applied to rocks that could potentially exhibit mass-independent effects, meteorites and Archaean terrestrial samples. The isotopic composition of a 3.8-Ga-old banded iron formation from Isua (IF-G, Greenland), and quartz-pyroxene rocks from Akilia and Innersuartuut (GR91-26 and SM/GR/171770, Greenland) are normal within uncertainties. Similarly, the Orgueil (CI1), Allende (CV3.2), Eagle Station (ESPAL), Brenham (MGPAL), and Old Woman (IIAB) meteorites do not show any mass-independent effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...