Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 123: 110529, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34062349

ABSTRACT

This study deals with the analysis of model parameters to mimic the airway collapse of an obstructive sleep apnea patient during nasal breathing. Different material properties and geometry variations of a patient-specific airway model are analyzed in detail. The patient-specific airway geometry is obtained from MRI data. A completely rigid model is compared to two partly elastic variations with different elasticities. Furthermore, the influence of the nasal cavities and the treatment effect of a mandibular protrusion are studied. Rigid model parts are 3D-printed and elastic parts cast from silicone. The models are analyzed under the impact of a transient airflow which is realized through a computer controlled piston pump. The results suggest, that, for moderate deformations, the elasticity of the soft tissue replicate influences rather the level of the pressure drop inside the airway than the shape of the pressure curve. The same suggestion can be made for the influence of the nasal cavities. Often, the spatial location of the minimum pressure is taken as the collapse site of the airway geometry. This study demonstrates, that the spatial locations of the minimum pressure and the maximum deformation do not match. This reveals the importance of a coupled approach of soft tissue and airflow analysis in the search of the collapse site and therefore the best treatment option. A treatment effect of the mandibular protrusion can be anticipated with an accurate patient-specific airway model.


Subject(s)
Airway Obstruction , Sleep Apnea, Obstructive , Humans , Magnetic Resonance Imaging , Respiration , Respiratory System , Sleep Apnea, Obstructive/diagnostic imaging , Sleep Apnea, Obstructive/therapy
2.
Cardiovasc Eng Technol ; 6(1): 8-18, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26577098

ABSTRACT

Although image-based methods like MRI are well-developed, numerical simulation can help to understand human heart function. This function results from a complex interplay of biochemistry, structural mechanics, and blood flow. The complexity of the entire system often causes one of the three parts to be neglected, which limits the truth to reality of the reduced model. This paper focuses on the interaction of myocardial stress distribution and ventricular blood flow during diastole and systole in comparison to a simulation of the same patient-specific geometry with a given wall movement (Spiegel, Strömungsmechanischer Beitrag zur Planung von Herzoperationen, 2009). The orthotropic constitutive law proposed by Holzapfel et al. (Philos. Trans. R. Soc. Lond. Ser. A, 367:3445-3475, 2009) was implemented in a finite element package to model the passive behavior of the myocardium. Then, this law was modified for contraction. Via the ALE method, the structural model was coupled to a flow model which incorporates blood rheology and the circulatory system (Oertel, Prandtl-Essentials of Fluid Mechanics, 3rd edn, Springer Science + Business Media, 2010; Oertel et al., Modelling the Human Cardiac Fluid Mechanics, 3rd edn, Universitätsverlag Karlsruhe, 2009). Comparison reveals a good quantitative and qualitative agreement with respect to fluid flow. The motion of the myocardium is consistent with physiological observations. The calculated stresses and the distribution are within the physiological range and appear to be reasonable. The coupled model presented contains many features essential to cardiac function. It is possible to calculate wall stresses as well as the characteristic ventricular fluid flow. Based on the simulations we derive two characteristics to assess the health state quantitatively including solid and fluid mechanical aspects.


Subject(s)
Heart/physiology , Hemodynamics , Models, Cardiovascular , Myocardial Contraction , Ventricular Function , Computer Simulation , Humans , Hydrodynamics , Myocardium
3.
Waste Manag ; 33(4): 907-14, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23374399

ABSTRACT

Screenings from municipal sewage treatment plants have increased in importance in recent years, particularly in Germany, where laws prohibit depositing of screenings in landfill. This paper presents basic investigations of sewage screenings, especially the structure and dewatering behavior. Two standard experiments are conducted. First, the relationship between pressure and water content is determined. Secondly the flow resistance as a function of pressure is evaluated. The results help to derive simulation models in order to understand how the material behaves inside a wash press.


Subject(s)
Sewage/analysis , Models, Theoretical , Pressure , Waste Management/standards , Water/analysis , Water/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...