Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Viruses ; 13(8)2021 08 09.
Article in English | MEDLINE | ID: mdl-34452435

ABSTRACT

Hemorrhagic smallpox, caused by variola virus (VARV), was a rare but nearly 100% lethal human disease manifestation. Hemorrhagic smallpox is frequently characterized by secondary bacterial infection, coagulopathy, and myocardial and subendocardial hemorrhages. Previous experiments have demonstrated that intravenous (IV) cowpox virus (CPXV) exposure of macaques mimics human hemorrhagic smallpox. The goal of this experiment was to further understand the onset, nature, and severity of cardiac pathology and how it may contribute to disease. The findings support an acute late-stage myocarditis with lymphohistiocytic infiltrates in the CPXV model of hemorrhagic smallpox.


Subject(s)
Cowpox virus/pathogenicity , Hemorrhage/virology , Myocarditis/virology , Smallpox/physiopathology , Smallpox/virology , Acute Disease , Animals , Disease Models, Animal , Female , Macaca fascicularis/virology , Male , Myocarditis/veterinary , Smallpox/complications
2.
Viruses ; 12(7)2020 07 14.
Article in English | MEDLINE | ID: mdl-32674252

ABSTRACT

Ongoing Ebola virus disease outbreaks in the Democratic Republic of the Congo follow the largest recorded outbreak in Western Africa (2013-2016). To combat outbreaks, testing of medical countermeasures (therapeutics or vaccines) requires a well-defined, reproducible, animal model. Here we present Ebola virus disease kinetics in 24 Chinese-origin rhesus monkeys exposed intramuscularly to a highly characterized, commercially available Kikwit Ebola virus Filovirus Animal Non-Clinical Group (FANG) stock. Until reaching predetermined clinical disease endpoint criteria, six animals underwent anesthesia for repeated clinical sampling and were compared to six that did not. Groups of three animals were euthanized and necropsied on days 3, 4, 5, and 6 post-exposure, respectively. In addition, three uninfected animals served as controls. Here, we present detailed characterization of clinical and laboratory disease kinetics and complete blood counts, serum chemistries, Ebola virus titers, and disease kinetics for future medical countermeasure (MCM) study design and control data. We measured no statistical difference in hematology, chemistry values, or time to clinical endpoint in animals that were anesthetized for clinical sampling during the acute disease compared to those that were not.


Subject(s)
Disease Models, Animal , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/physiopathology , Macaca mulatta , Animals , Disease Progression , Ebolavirus/classification , Female , Male , Viral Load , Viremia
3.
J Infect Dis ; 219(11): 1818-1822, 2019 05 05.
Article in English | MEDLINE | ID: mdl-30517671

ABSTRACT

Lassa fever (LF) survivors develop various clinical manifestations including polyserositis, myalgia, epididymitis, and hearing loss weeks to months after recovery from acute infection. We demonstrate a systemic lymphoplasmacytic and histiocytic arteritis and periarteritis in guinea pigs more than 2 months after recovery from acute Lassa virus (LASV) infection. LASV was detected in the arterial tunica media smooth muscle cells by immunohistochemistry, in situ hybridization, and transmission electron microscopy. Our results suggest that the sequelae of LASV infection may be due to virus persistence resulting in systemic vascular damage. These findings shed light on the pathogenesis of LASV sequelae in convalescent human survivors.


Subject(s)
Lassa Fever/virology , Lassa virus/immunology , Animals , Convalescence , Disease Models, Animal , Disease Progression , Female , Guinea Pigs , Humans , Immunohistochemistry , Inflammation , Lassa Fever/pathology , Male
4.
J Infect Dis ; 218(suppl_5): S636-S648, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30010950

ABSTRACT

Transchromosomic bovines (Tc-bovines) adaptively produce fully human polyclonal immunoglobulin (Ig)G antibodies after exposure to immunogenic antigen(s). The National Interagency Confederation for Biological Research and collaborators rapidly produced and then evaluated anti-Ebola virus IgG immunoglobulins (collectively termed SAB-139) purified from Tc-bovine plasma after sequential hyperimmunization with an Ebola virus Makona isolate glycoprotein nanoparticle vaccine. SAB-139 was characterized by several in vitro production, research, and clinical level assays using wild-type Makona-C05 or recombinant virus/antigens from different Ebola virus variants. SAB-139 potently activates natural killer cells, monocytes, and peripheral blood mononuclear cells and has high-binding avidity demonstrated by surface plasmon resonance. SAB-139 has similar concentrations of galactose-α-1,3-galactose carbohydrates compared with human-derived intravenous Ig, and the IgG1 subclass antibody is predominant. All rhesus macaques infected with Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 and treated with sufficient SAB-139 at 1 day (n = 6) or 3 days (n = 6) postinfection survived versus 0% of controls. This study demonstrates that Tc-bovines can produce pathogen-specific human Ig to prevent and/or treat patients when an emerging infectious disease either threatens to or becomes an epidemic.


Subject(s)
Antibodies, Viral/therapeutic use , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/drug therapy , Immunoglobulin G/therapeutic use , Animals , Cattle , Chlorocebus aethiops , Female , Humans , Macaca mulatta , Male , Vero Cells
5.
Sci Transl Med ; 9(385)2017 04 12.
Article in English | MEDLINE | ID: mdl-28404864

ABSTRACT

The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance.


Subject(s)
Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Leukocytes/metabolism , Disease Outbreaks , Hemorrhagic Fever, Ebola/blood , Humans , Longitudinal Studies , RNA, Viral/blood , RNA, Viral/genetics , Virus Replication/physiology
6.
J Gen Virol ; 97(8): 1942-1954, 2016 08.
Article in English | MEDLINE | ID: mdl-27166137

ABSTRACT

We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.


Subject(s)
Aerosols , Cowpox virus/pathogenicity , Cowpox/pathology , Cowpox/virology , Disease Models, Animal , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Animals , Macaca mulatta , Respiratory Tract Infections/diagnostic imaging , Tomography, X-Ray Computed
7.
PLoS Negl Trop Dis ; 10(5): e0004709, 2016 05.
Article in English | MEDLINE | ID: mdl-27191161

ABSTRACT

Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.


Subject(s)
Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/virology , CD4-Positive T-Lymphocytes/immunology , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Animals , Antigen Presentation , Chemokines/analysis , Chemokines/immunology , Cytokines/analysis , Cytokines/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Host-Pathogen Interactions , Humans , Interferon-gamma/analysis , Interferon-gamma/immunology , Interleukin-2/analysis , Interleukin-2/immunology , Lymphocyte Activation , Macaca mulatta , Macrophages/immunology , Macrophages/virology , Vaccines, Attenuated/immunology , Virus Replication , Yellow fever virus/physiology
8.
Antiviral Res ; 129: 120-129, 2016 May.
Article in English | MEDLINE | ID: mdl-26923881

ABSTRACT

BACKGROUND: Influenza results in up to 500,000 deaths annually. Seasonal influenza vaccines have an estimated 60% effectiveness, but provide little or no protection against novel subtypes, and may be less protective in high-risk groups. Neuraminidase inhibitors are recommended for the treatment of severe influenza infection, but are not proven to reduce mortality in severe disease. Preclinical models of severe influenza infection that closely correlate to human disease are needed to assess efficacy of new vaccines and therapeutics. METHODS: We developed a nonhuman primate model of influenza and bacterial co-infection that recapitulates severe pneumonia in humans. Animals were infected with influenza A virus via intra-bronchial or small-particle aerosol inoculation, methicillin-resistant Staphylococcus aureus, or co-infected with influenza and methicillin-resistant S. aureus combined. We assessed the severity of disease in animals over the course of our study using tools available to evaluate critically ill human patients including high-resolution computed tomography imaging of the lungs, arterial blood gas analyses, and bronchoalveolar lavage. RESULTS: Using an intra-bronchial route of inoculation we successfully induced severe pneumonia following influenza infection alone and following influenza and bacterial co-infection. Peak illness was observed at day 6 post-influenza infection, manifested by bilateral pulmonary infiltrates and hypoxemia. The timing of radiographic and physiologic manifestations of disease in our model closely match those observed in severe human influenza infection. DISCUSSION: This was the first nonhuman primate study of influenza and bacterial co-infection where high-resolution computed tomography scanning of the lungs was used to quantitatively assess pneumonia over the course of illness and where hypoxemia was correlated with pneumonia severity. With additional validation this model may serve as a pathway for regulatory approval of vaccines and therapeutics for the prevention and treatment of severe influenza pneumonia.


Subject(s)
Coinfection , Influenza A virus , Models, Animal , Orthomyxoviridae Infections/complications , Pneumonia, Staphylococcal/complications , Pneumonia, Viral/complications , Animals , Humans , Influenza A virus/pathogenicity , Influenza Vaccines , Influenza, Human/complications , Influenza, Human/microbiology , Lung/microbiology , Lung/pathology , Lung/virology , Macaca mulatta , Male , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Positron Emission Tomography Computed Tomography
9.
MMWR Morb Mortal Wkly Rep ; 64(17): 479-81, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25950255

ABSTRACT

On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence. Ebola virus has been isolated from semen as long as 82 days after symptom onset and viral RNA has been detected in semen up to 101 days after symptom onset. One instance of possible sexual transmission of Ebola has been reported, although the accompanying evidence was inconclusive. In addition, possible sexual transmission of Marburg virus, a filovirus related to Ebola, was documented in 1968. This report describes the investigation by the Government of Liberia and international response partners of the source of Liberia's latest Ebola case and discusses the public health implications of possible sexual transmission of Ebola virus. Based on information gathered in this investigation, CDC now recommends that contact with semen from male Ebola survivors be avoided until more information regarding the duration and infectiousness of viral shedding in body fluids is known. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/transmission , Sexually Transmitted Diseases, Viral , Adult , Disease Outbreaks , Female , Hemorrhagic Fever, Ebola/epidemiology , Humans , Liberia/epidemiology , Male , Middle Aged , RNA, Viral , Semen/virology , Survivors , Unsafe Sex
10.
Virology ; 481: 124-35, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25776759

ABSTRACT

Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases.


Subject(s)
Cowpox virus/physiology , Disease Models, Animal , Macaca mulatta , Respiratory Tract Diseases/virology , Aerosols/analysis , Animals , Cowpox/immunology , Cowpox/mortality , Cowpox/pathology , Cowpox/virology , Cowpox virus/pathogenicity , Female , Humans , Male , Monocytes/virology , Respiratory System/immunology , Respiratory System/pathology , Respiratory System/virology , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/mortality , Respiratory Tract Diseases/pathology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...