Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 19(11): 17305-13, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25353382

ABSTRACT

The radical cation of s-trioxane, radiolytically generated in a freon (CF3CCl3) matrix, was studied in the 10-140 K temperature region. Reversible changes of the EPR spectra were observed, arising from both ring puckering and ring inversion through the molecular plane. The ESREXN program based on the Liouville density matrix equation, allowing the treatment of dynamical exchange, has been used to analyze the experimental results. Two limiting conformer structures of the s-trioxane radical cation were taken into account, namely "rigid" half-boat and averaged planar ones, differing strongly in their electron distribution. The spectrum due to the "rigid" half-boat conformer can be observed only at very low (<60 K) temperatures, when the exchange of conformers is very slow. Two transition states for interconversion by puckering and ring-inversion were identified, close in activation energy (2.3 and 3.0 kJ/mol calculated). Since the energy difference is very small, both processes set on at a comparable temperature. In the case of nearly complete equilibration (fast exchange) between six energetically equivalent structures at T > 120 K in CF3CCl3, a septet due to six equivalent protons (hfs splitting constant 5.9 mT) is observed, characteristic of the dynamically averaged planar geometry of the radical cation. DFT quantum chemical calculations and spectral simulation including intramolecular dynamical exchange support the interpretation.


Subject(s)
Cations/chemistry , Heterocyclic Compounds/chemistry , Chlorofluorocarbons/chemistry , Cold Temperature , Electrons , Models, Theoretical , Protons
2.
J Phys Chem A ; 110(51): 13816-26, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181339

ABSTRACT

Matrix EPR studies and quantum chemical calculations have been used to characterize the consecutive H-atom shifts undergone by the nitrogen-centered parent radical cations of propargylamine (1b*+) and allylamine (5*+) on thermal or photoinduced activation. The radical cation rearrangements of these unsaturated parent amines occur initially by a 1,2 H-atom shift from C1 to C2 with pi-bond formation at the positively charged nitrogen; this is followed by a consecutive reaction involving a second H-atom shift from C2 to C3. Thus, exposure to red light (lambda > 650 nm) converts 1b*+ to the vinyl-type distonic radical cation 2*+ which in turn is transformed on further photolysis with blue-green light (lambda approximately 400-600 nm) to the allene-type heteroallylic radical cation 3*+. Calculations show that the energy ordering is 1b*+ > 2*+ > 3*+, so that the consecutive H-atom shifts are driven by the formation of more stable isomers. Similarly, the parent radical cation of allylamine 5*+ undergoes a spontaneous 1,2-hydrogen atom shift from C1 to C2 at 77 K with a t1/2 of approximately 1 h to yield the distonic alkyl-type iminopropyl radical cation 6*+; this thermal reaction is attributed largely to quantum tunneling, and the rate is enhanced on concomitant photobleaching with visible light. Subsequent exposure to UV light (lambda approximately 350-400 nm) converts 6*+ by a 2,3 H-shift to the 1-aminopropene radical cation 7*+, which is confirmed to be the lowest-energy isomer derived from the ionization of either allylamine or cyclopropylamine. Although the parent radical cations of N, N-dimethylallylamine (9*+) and N-methylallylamine (11*+) are both stabilized by the electron-donating character of the methyl group(s), the photobleaching of 9*+ leads to the remarkable formation of the cyclic 1-methylpyrrolidine radical cation 10*+. The first step of this transformation now involves the migration of a hydrogen atom to C2 of the allyl group from one of the methyl groups (rather than from C1); the reaction is then completed by the cyclization of the generated MeN + (=CH2) CH2CH2CH2* distonic radical cation, possibly in a concerted overall process. In contrast to the ubiquitous H-atom transfer from carbon to nitrogen that occurs in the parent radical cations of saturated amines, the alternate rearrangements of either 1b*+ or 5*+ to an ammonium-type radical cation by a hypothetical H-atom shift from C1 to the ionized NH2 group are not observed. This is in line with calculations showing that the thermal barrier for this transformation is much higher (approximately 120 kJ mol-1) than those for the conversion of 1b*+ --> 2*+ and 5*+--> 6*+ (approximately 40-60 kJ mol-1).


Subject(s)
Allylamine/chemistry , Cations/chemistry , Chlorofluorocarbons, Methane/chemistry , Light , Pargyline/analogs & derivatives , Propylamines/chemistry , Temperature , Algorithms , Cations/radiation effects , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Free Radicals/radiation effects , Kinetics , Molecular Structure , Pargyline/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...