Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
mBio ; 10(3)2019 06 18.
Article in English | MEDLINE | ID: mdl-31213562

ABSTRACT

A major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found that in vivoH. ducreyi transcripts were distinct from those in the inocula, as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggest that H. ducreyi exploits the metabolic niche created by the host immune response.IMPORTANCE Dual RNA sequencing (RNA-seq) offers the promise of determining an interactome at a transcriptional level between a bacterium and the host but has yet to be done on any bacterial infection in human tissue. We performed dual RNA-seq and metabolomics analyses on wounded and infected sites following experimental infection of the arm with H. ducreyi Our results suggest that H. ducreyi survives in an abscess by utilizing l-ascorbate as an alternative carbon source, possibly taking advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregulating genes involved in anaerobic metabolism and inorganic ion and nutrient transport. To our knowledge, this is the first description of an interaction network between a bacterium and the human host at a site of infection.


Subject(s)
Chancroid/genetics , Gene Regulatory Networks , Haemophilus ducreyi/genetics , Haemophilus ducreyi/pathogenicity , Host-Pathogen Interactions/genetics , Metabolome , Adult , Anaerobiosis , Ascorbic Acid/metabolism , Bacterial Proteins/genetics , Chancroid/immunology , Female , Gene Expression Profiling , Humans , Male , Metabolomics , Middle Aged , RNA-Seq
2.
Infect Immun ; 87(7)2019 07.
Article in English | MEDLINE | ID: mdl-31036601

ABSTRACT

Haemophilus ducreyi causes chancroid and is a major cause of cutaneous ulcers in children. Due to environmental reservoirs, both class I and class II H. ducreyi strains persist in cutaneous ulcer regions of endemicity following mass drug administration of azithromycin, suggesting the need for a vaccine. The hemoglobin receptor (HgbA) is a leading vaccine candidate, but its efficacy in animal models is class specific. Controlled human infection models can be used to evaluate vaccines, but only a class I strain (35000HP) has been characterized in this model. As a prelude to evaluating HgbA vaccines in the human model, we tested here whether a derivative of 35000HP containing a class II hgbA allele (FX548) is as virulent as 35000HP in humans. In eight volunteers infected at three sites with each strain, the papule formation rate was 95.8% for 35000HP versus 62.5% for FX548 (P = 0.021). Excluding doses of FX548 that were ≥2-fold higher than those of 35000HP, the pustule formation rate was 25% for 35000HP versus 11.7% for FX548 (P = 0.0053). By Western blot analysis, FX548 and 35000HP expressed equivalent amounts of HgbA in whole-cell lysates and outer membranes. The growth of FX548 and 35000HP was similar in media containing hemoglobin or hemin. By whole-genome sequencing and single-nucleotide polymorphism analysis, FX548 contained no mutations in open reading frames other than hgbA We conclude that by an unknown mechanism, FX548 is partially attenuated in humans and is not a suitable strain for HgbA vaccine efficacy trials in the model.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Chancroid/prevention & control , Haemophilus Vaccines/immunology , Haemophilus ducreyi/immunology , Adult , Alleles , Bacterial Proteins/administration & dosage , Carrier Proteins/administration & dosage , Chancroid/immunology , Chancroid/microbiology , Female , Haemophilus Vaccines/administration & dosage , Haemophilus Vaccines/genetics , Haemophilus ducreyi/genetics , Humans , Male , Middle Aged , Young Adult
3.
Top Antivir Med ; 24(2): 90-92, 2016.
Article in English | MEDLINE | ID: mdl-27841978

ABSTRACT

A recent outbreak of HIV infection centered in the rural town of Austin in Scott County, Indiana, was associated with widespread injection drug use and a socio-economically depressed population. Control of the outbreak required coordinated efforts by state, federal, local, and academic institutions to implement and maintain on-site programs and services that included contact tracing, HIV and hepatitis C virus testing, insurance enrollment, syringe exchange, rehabilitation services, care coordination, preexposure prophylaxis, and HIV treatment. This article summarizes a presentation by Diane M. Janowicz, MD, at the IAS-USA continuing education program, Improving the Management of HIV Disease, held in Los Angeles, California, in April 2016.


Subject(s)
Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Disease Outbreaks , Disease Transmission, Infectious , HIV Infections/epidemiology , HIV Infections/transmission , Substance Abuse, Intravenous/complications , HIV Infections/prevention & control , Humans , Indiana/epidemiology
4.
mBio ; 6(5): e01315-15, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26374122

ABSTRACT

UNLABELLED: The influence of the skin microbiota on host susceptibility to infectious agents is largely unexplored. The skin harbors diverse bacterial species that may promote or antagonize the growth of an invading pathogen. We developed a human infection model for Haemophilus ducreyi in which human volunteers are inoculated on the upper arm. After inoculation, papules form and either spontaneously resolve or progress to pustules. To examine the role of the skin microbiota in the outcome of H. ducreyi infection, we analyzed the microbiomes of four dose-matched pairs of "resolvers" and "pustule formers" whose inoculation sites were swabbed at multiple time points. Bacteria present on the skin were identified by amplification and pyrosequencing of 16S rRNA genes. Nonmetric multidimensional scaling (NMDS) using Bray-Curtis dissimilarity between the preinfection microbiomes of infected sites showed that sites from the same volunteer clustered together and that pustule formers segregated from resolvers (P = 0.001, permutational multivariate analysis of variance [PERMANOVA]), suggesting that the preinfection microbiomes were associated with outcome. NMDS using Bray-Curtis dissimilarity of the endpoint samples showed that the pustule sites clustered together and were significantly different than the resolved sites (P = 0.001, PERMANOVA), suggesting that the microbiomes at the endpoint differed between the two groups. In addition to H. ducreyi, pustule-forming sites had a greater abundance of Proteobacteria, Bacteroidetes, Micrococcus, Corynebacterium, Paracoccus, and Staphylococcus species, whereas resolved sites had higher levels of Actinobacteria and Propionibacterium species. These results suggest that at baseline, resolvers and pustule formers have distinct skin bacterial communities which change in response to infection and the resultant immune response. IMPORTANCE: Human skin is home to a diverse community of microorganisms, collectively known as the skin microbiome. Some resident bacteria are thought to protect the skin from infection by outcompeting pathogens for resources or by priming the immune system's response to invaders. However, the influence of the skin microbiome on the susceptibility to or protection from infection has not been prospectively evaluated in humans. We characterized the skin microbiome before, during, and after experimental inoculation of the arm with Haemophilus ducreyi in matched volunteers who subsequently resolved the infection or formed abscesses. Our results suggest that the preinfection microbiomes of pustule formers and resolvers have distinct community structures which change in response to the progression of H. ducreyi infection to abscess formation.


Subject(s)
Haemophilus ducreyi/growth & development , Microbiota , Skin Diseases, Bacterial/microbiology , Skin Diseases, Bacterial/pathology , Skin/microbiology , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , Molecular Sequence Data , Phylogeny , Prospective Studies , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Infect Immun ; 83(8): 3281-92, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26056381

ABSTRACT

The (p)ppGpp-mediated stringent response is important for bacterial survival in nutrient limiting conditions. For maximal effect, (p)ppGpp interacts with the cofactor DksA, which stabilizes (p)ppGpp's interaction with RNA polymerase. We previously demonstrated that (p)ppGpp was required for the virulence of Haemophilus ducreyi in humans. Here, we constructed an H. ducreyi dksA mutant and showed it was also partially attenuated for pustule formation in human volunteers. To understand the roles of (p)ppGpp and DksA in gene regulation in H. ducreyi, we defined genes potentially altered by (p)ppGpp and DksA deficiency using transcriptome sequencing (RNA-seq). In bacteria collected at stationary phase, lack of (p)ppGpp and DksA altered expression of 28% and 17% of H. ducreyi open reading frames, respectively, including genes involved in transcription, translation, and metabolism. There was significant overlap in genes differentially expressed in the (p)ppGpp mutant relative to the dksA mutant. Loss of (p)ppGpp or DksA resulted in the dysregulation of several known virulence determinants. Deletion of dksA downregulated lspB and rendered the organism less resistant to phagocytosis and increased its sensitivity to oxidative stress. Both mutants had reduced ability to attach to human foreskin fibroblasts; the defect correlated with reduced expression of the Flp adhesin proteins in the (p)ppGpp mutant but not in the dksA mutant, suggesting that DksA regulates the expression of an unknown cofactor(s) required for Flp-mediated adherence. We conclude that both (p)ppGpp and DksA serve as major regulators of H. ducreyi gene expression in stationary phase and have both overlapping and unique contributions to pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Chancroid/microbiology , Guanosine Tetraphosphate/metabolism , Haemophilus ducreyi/metabolism , Haemophilus ducreyi/pathogenicity , Adult , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial , Haemophilus ducreyi/genetics , Haemophilus ducreyi/growth & development , Humans , Male , Virulence
6.
PLoS One ; 10(4): e0124373, 2015.
Article in English | MEDLINE | ID: mdl-25902140

ABSTRACT

Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs), including α-defensins, ß-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap) transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS) by the addition of positively charged moieties, such as phosphoethanolamine (PEA), confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB) in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and ß-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Ethanolaminephosphotransferase/genetics , Haemophilus ducreyi/genetics , Lipid A/metabolism , Administration, Oral , Adult , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/metabolism , Chancroid/drug therapy , Chancroid/microbiology , Chancroid/pathology , Ciprofloxacin/therapeutic use , Ethanolaminephosphotransferase/metabolism , Ethanolamines/metabolism , Female , Gene Deletion , Gene Expression , Genetic Complementation Test , Haemophilus ducreyi/drug effects , Haemophilus ducreyi/metabolism , Haemophilus ducreyi/pathogenicity , Healthy Volunteers , Humans , Lipid A/chemistry , Male , Mutation , Protein Binding , Static Electricity , alpha-Defensins/pharmacology , beta-Defensins/pharmacology , Cathelicidins
7.
BMC Microbiol ; 14: 166, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24961160

ABSTRACT

BACKGROUND: Bacterial lipoproteins often play important roles in pathogenesis and can stimulate protective immune responses. Such lipoproteins are viable vaccine candidates. Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, expresses a number of lipoproteins during human infection. One such lipoprotein, OmpP4, is homologous to the outer membrane lipoprotein e (P4) of H. influenzae. In H. influenzae, e (P4) stimulates production of bactericidal and protective antibodies and contributes to pathogenesis by facilitating acquisition of the essential nutrients heme and nicotinamide adenine dinucleotide (NAD). Here, we tested the hypothesis that, like its homolog, H. ducreyi OmpP4 contributes to virulence and stimulates production of bactericidal antibodies. RESULTS: We determined that OmpP4 is broadly conserved among clinical isolates of H. ducreyi. We next constructed and characterized an isogenic ompP4 mutant, designated 35000HPompP4, in H. ducreyi strain 35000HP. To test whether OmpP4 was necessary for virulence in humans, eight healthy adults were experimentally infected. Each subject was inoculated with a fixed dose of 35000HP on one arm and three doses of 35000HPompP4 on the other arm. The overall parent and mutant pustule formation rates were 52.4% and 47.6%, respectively (P = 0.74). These results indicate that expression of OmpP4 in not necessary for H. ducreyi to initiate disease or progress to pustule formation in humans. Hyperimmune mouse serum raised against purified, recombinant OmpP4 did not promote bactericidal killing of 35000HP or phagocytosis by J774A.1 mouse macrophages in serum bactericidal and phagocytosis assays, respectively. CONCLUSIONS: Our data suggest that, unlike e (P4), H. ducreyi OmpP4 is not a suitable vaccine candidate. OmpP4 may be dispensable for virulence because of redundant mechanisms in H. ducreyi for heme acquisition and NAD utilization.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Chancroid/microbiology , Haemophilus ducreyi/pathogenicity , Virulence Factors/metabolism , Adult , Animals , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Blood Bactericidal Activity , Female , Gene Deletion , Humans , Lipoproteins/genetics , Lipoproteins/immunology , Lipoproteins/metabolism , Male , Mice , Middle Aged , Models, Theoretical , Phagocytosis , Virulence Factors/genetics , Virulence Factors/immunology , Young Adult
8.
Infect Immun ; 82(8): 3492-502, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24914217

ABSTRACT

(p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA single mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to the mid-log phase, the double mutant was significantly more resistant than its parent to being taken up by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in the stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes.


Subject(s)
Guanosine Pentaphosphate/deficiency , Haemophilus ducreyi/pathogenicity , Ligases/metabolism , Pyrophosphatases/metabolism , Adult , Dermatitis/microbiology , Dermatitis/pathology , Female , Gene Deletion , Genetic Complementation Test , Haemophilus ducreyi/genetics , Healthy Volunteers , Humans , Ligases/genetics , Male , Middle Aged , Pyrophosphatases/genetics
9.
mBio ; 5(1): e01081-13, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24520065

ABSTRACT

UNLABELLED: To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. IMPORTANCE: Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.


Subject(s)
Gene Expression Regulation, Bacterial , Haemophilus ducreyi/growth & development , Haemophilus ducreyi/genetics , Host Factor 1 Protein/metabolism , Virulence Factors/biosynthesis , Adult , Chancroid/microbiology , Chancroid/pathology , Female , Gene Expression Profiling , Gene Knockout Techniques , Haemophilus ducreyi/pathogenicity , Healthy Volunteers , Host Factor 1 Protein/genetics , Humans , Male , Middle Aged
10.
Infect Immun ; 81(2): 608-17, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23230298

ABSTRACT

The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.


Subject(s)
Bacterial Proteins/metabolism , Carbon/metabolism , Chancroid/metabolism , Chancroid/microbiology , Haemophilus ducreyi/metabolism , Haemophilus ducreyi/pathogenicity , Adult , Amino Acid Sequence , Bacterial Proteins/genetics , Chancroid/genetics , Fibroblasts/metabolism , Fibroblasts/microbiology , Haemophilus ducreyi/genetics , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/microbiology , Macrophages/metabolism , Macrophages/microbiology , Molecular Sequence Data , Mutation , Oxidative Stress/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Sequence Deletion/genetics , Virulence , Young Adult
11.
J Infect Dis ; 206(9): 1407-14, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22930807

ABSTRACT

BACKGROUND: Haemophilus ducreyi encounters several classes of antimicrobial peptides (APs) in vivo and utilizes the sensitive-to-antimicrobial-peptides (Sap) transporter as one mechanism of AP resistance. A mutant lacking the periplasmic solute-binding component, SapA, was somewhat more sensitive to the cathelicidin LL-37 than the parent strain and was partially attenuated for virulence. The partial attenuation led us to question whether the transporter is fully abrogated in the sapA mutant. METHODS: We generated a nonpolar sapBC mutant, which lacks both inner membrane permeases of the Sap transporter, and tested the mutant for virulence in human volunteers. In vitro, we compared LL-37 resistance phenotypes of the sapBC and sapA mutants. RESULTS: Unlike the sapA mutant, the sapBC mutant was fully attenuated for virulence in human volunteers. In vitro, the sapBC mutant exhibited significantly greater sensitivity than the sapA mutant to killing by LL-37. Similar to the sapA mutant, the sapBC mutant did not affect H. ducreyi's resistance to human defensins. CONCLUSIONS: Compared with the sapA mutant, the sapBC mutant exhibited greater attenuation in vivo, which directly correlated with increased sensitivity to LL-37 in vitro. These results strongly suggest that the SapBC channel retains activity when SapA is removed.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Bacterial , Haemophilus ducreyi/enzymology , Membrane Transport Proteins/metabolism , Virulence Factors/metabolism , Adult , Chancroid/microbiology , Chancroid/pathology , Female , Gene Deletion , Haemophilus ducreyi/drug effects , Haemophilus ducreyi/genetics , Haemophilus ducreyi/pathogenicity , Human Experimentation , Humans , Male , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Middle Aged , Virulence , Young Adult , Cathelicidins
12.
Infect Immun ; 80(2): 679-87, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22144477

ABSTRACT

Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.


Subject(s)
Bacterial Proteins/metabolism , Chancroid/microbiology , Haemophilus ducreyi/metabolism , Haemophilus ducreyi/pathogenicity , Lipopolysaccharides/metabolism , N-Acetylneuraminic Acid/metabolism , Adult , Bacterial Proteins/genetics , Dendritic Cells , Female , Gene Expression Regulation, Bacterial/physiology , Humans , Macrophages/physiology , Male , Middle Aged , Mutation , Phagocytosis , Virulence , Young Adult
13.
BMC Microbiol ; 11: 208, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21939541

ABSTRACT

BACKGROUND: Haemophilus ducreyi, the causative agent of the sexually transmitted disease chancroid, contains a flp (fimbria like protein) operon that encodes proteins predicted to contribute to adherence and pathogenesis. H. ducreyi mutants that lack expression of Flp1 and Flp2 or TadA, which has homology to NTPases of type IV secretion systems, have decreased abilities to attach to and form microcolonies on human foreskin fibroblasts (HFF). A tadA mutant is attenuated in its ability to cause disease in human volunteers and in the temperature dependent rabbit model, but a flp1flp2 mutant is virulent in rabbits. Whether a flp deletion mutant would cause disease in humans is not clear. RESULTS: We constructed 35000HPΔflp1-3, a deletion mutant that lacks expression of all three Flp proteins but has an intact tad secretion system. 35000HPΔflp1-3 was impaired in its ability to form microcolonies and to attach to HFF in vitro when compared to its parent (35000HP). Complementation of the mutant with flp1-3 in trans restored the parental phenotype. To test whether expression of Flp1-3 was necessary for virulence in humans, ten healthy adult volunteers were experimentally infected with a fixed dose of 35000HP (ranging from 54 to 67 CFU) on one arm and three doses of 35000HPΔflp1-3 (ranging from 63 to 961 CFU) on the other arm. The overall papule formation rate for the parent was 80% (95% confidence interval, CI, 55.2%-99.9%) and for the mutant was 70.0% (95% CI, 50.5%-89.5%) (P = 0.52). Mutant papules were significantly smaller (mean, 11.2 mm2) than were parent papules (21.8 mm2) 24 h after inoculation (P = 0.018). The overall pustule formation rates were 46.7% (95% CI 23.7-69.7%) at 30 parent sites and 6.7% (95% CI, 0.1-19.1%) at 30 mutant sites (P = 0.001). CONCLUSION: These data suggest that production and secretion of the Flp proteins contributes to microcolony formation and attachment to HFF cells in vitro. Expression of flp1-3 is also necessary for H. ducreyi to initiate disease and progress to pustule formation in humans. Future studies will focus on how Flp proteins contribute to microcolony formation and attachment in vivo.


Subject(s)
Bacterial Proteins/metabolism , Chancroid/microbiology , Haemophilus ducreyi/physiology , Haemophilus ducreyi/pathogenicity , Adult , Bacterial Adhesion , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial , Haemophilus ducreyi/genetics , Human Experimentation , Humans , Male , Middle Aged , Operon , Sequence Deletion , Virulence
14.
J Infect Dis ; 203(12): 1859-65, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21606544

ABSTRACT

Haemophilus ducreyi 35000HP contains a homolog of the CpxRA 2-component signal transduction system, which controls the cell envelope stress response system in other gram-negative bacteria and regulates some important H. ducreyi virulence factors. A H. ducreyi cpxR mutant was compared with its parent for virulence in the human challenge model of experimental chancroid. The pustule formation rate in 5 volunteers was 33% (95% confidence interval [CI], 1.3%-65.3%) at 15 parent sites and 40% (95% CI, 18.1%-61.9%) at 15 mutant sites (P = .35). Thus, the cpxR mutant was not attenuated for virulence. Inactivation of the H. ducreyi cpxR gene did not reduce the ability of this mutant to express certain proven virulence factors, including the DsrA serum resistance protein and the LspA2 protein, which inhibits phagocytosis. These results expand our understanding of the involvement of the CpxRA system in regulating virulence expression in H. ducreyi.


Subject(s)
Bacterial Proteins/genetics , Chancroid/microbiology , Haemophilus ducreyi/genetics , Haemophilus ducreyi/pathogenicity , Blotting, Western , Female , Humans , Male , Middle Aged , Phagocytosis , Sequence Deletion , Virulence Factors/genetics
15.
Infect Immun ; 78(9): 3898-904, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20605985

ABSTRACT

Haemophilus ducreyi must adapt to the environment of the human host to establish and maintain infection in the skin. Bacteria generally utilize stress response systems, such as the CpxRA two-component system, to adapt to hostile environments. CpxRA is the only obvious two-component system contained in the H. ducreyi genome and negatively regulates the lspB-lspA2 operon, which encodes proteins that enable the organism to resist phagocytosis. We constructed an unmarked, in-frame H. ducreyi cpxA deletion mutant, 35000HPDeltacpxA. In human inoculation experiments, 35000HPDeltacpxA formed papules at a rate and size that were significantly less than its parent and was unable to form pustules compared to the parent. CpxA usually has kinase and phosphatase activities for CpxR, and the deletion of CpxA leads to the accumulation of activated CpxR due to the loss of phosphatase activity and the ability of CpxR to accept phosphate groups from other donors. Using a reporter construct, the lspB-lspA2 promoter was downregulated in 35000HPDeltacpxA, confirming that CpxR was activated. Deletion of cpxA downregulated DsrA, the major determinant of serum resistance in the organism, causing the mutant to become serum susceptible. Complementation in trans restored parental phenotypes. 35000HPDeltacpxA is the first H. ducreyi mutant that is impaired in its ability to form both papules and pustules in humans. Since a major function of CpxRA is to control the flow of protein traffic across the periplasm, uncontrolled activation of this system likely causes dysregulated expression of multiple virulence determinants and cripples the ability of the organism to adapt to the host.


Subject(s)
Bacterial Proteins/physiology , Haemophilus ducreyi/pathogenicity , Protein Kinases/physiology , Adult , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Female , Gene Deletion , Humans , Lectins/genetics , Male , Middle Aged
16.
J Infect Dis ; 201(12): 1839-48, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20443736

ABSTRACT

Haemophilus ducreyi causes chancroid, a genital ulcer disease. Among human volunteers, the majority of experimentally infected individuals fail to clear the infection and form pustules. Here, we investigated the role played by CD4(+)FOXP3(+) regulatory T (T(reg)) cells in the formation of pustules. In pustules, there was a significant enrichment of CD4(+)FOXP3(+) T cells, compared with that in peripheral blood. The majority of lesional FOXP3(+) T cells were CD4(+), CD25(+), CD127(lo/-), and CTLA-4(+). FOXP3(+) T cells were found throughout pustules but were most abundant at their base. Significantly fewer lesional CD4(+)FOXP3(+) T cells expressed interferon gamma, compared with lesional CD4(+)FOXP3(-) effector T cells. Depletion of CD4(+)CD25(+) T cells from the peripheral blood of infected and uninfected volunteers significantly enhanced proliferation of H. ducreyi-reactive CD4(+) T cells. Our results indicate that the population of CD4(+)CD25(+)CD127(lo/-)FOXP3(+) T(reg) cells are expanded at H. ducreyi-infected sites and that these cells may play a role in suppressing the host immune response to the bacterium.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/analysis , Haemophilus Infections/immunology , Haemophilus ducreyi/immunology , Immune Tolerance , T-Lymphocytes, Regulatory/immunology , Adult , CD4-Positive T-Lymphocytes/chemistry , Human Experimentation , Humans , Interferon-gamma/biosynthesis , Lymphocyte Depletion , Male , Skin Diseases, Bacterial/immunology , Skin Diseases, Bacterial/pathology , T-Lymphocytes, Regulatory/chemistry , Young Adult
17.
Infect Immun ; 78(3): 1176-84, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20086092

ABSTRACT

Haemophilus ducreyi is an extracellular pathogen of human epithelial surfaces that resists human antimicrobial peptides (APs). The organism's genome contains homologs of genes sensitive to antimicrobial peptides (sap operon) in nontypeable Haemophilus influenzae. In this study, we characterized the sap-containing loci of H. ducreyi 35000HP and demonstrated that sapA is expressed in broth cultures and H. ducreyi-infected tissue; sapA is also conserved among both class I and class II H. ducreyi strains. We constructed a nonpolar sapA mutant of H. ducreyi 35000HP, designated 35000HPsapA, and compared the percent survival of wild-type 35000HP and 35000HPsapA exposed to several human APs, including alpha-defensins, beta-defensins, and the cathelicidin LL-37. Unlike an H. influenzae sapA mutant, strain 35000HPsapA was not more susceptible to defensins than strain 35000HP was. However, we observed a significant decrease in the survival of strain 35000HPsapA after exposure to LL-37, which was complemented by introducing sapA in trans. Thus, the Sap transporter plays a role in resistance of H. ducreyi to LL-37. We next compared mutant strain 35000HPsapA with strain 35000HP for their ability to cause disease in human volunteers. Although both strains caused papules to form at similar rates, the pustule formation rate at sites inoculated with 35000HPsapA was significantly lower than that of sites inoculated with 35000HP (33.3% versus 66.7%; P = 0.007). Together, these data establish that SapA acts as a virulence factor and as one mechanism for H. ducreyi to resist killing by antimicrobial peptides. To our knowledge, this is the first demonstration that an antimicrobial peptide resistance mechanism contributes to bacterial virulence in humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/physiology , Drug Resistance, Bacterial , Haemophilus ducreyi/drug effects , Haemophilus ducreyi/pathogenicity , Virulence Factors/physiology , Adult , Bacterial Proteins/genetics , Chancroid/microbiology , Chancroid/pathology , Conserved Sequence , Female , Gene Deletion , Gene Expression Profiling , Genetic Complementation Test , Human Experimentation , Humans , Male , Microbial Sensitivity Tests , Microbial Viability/drug effects , Middle Aged , Skin/pathology , Virulence , Virulence Factors/genetics , Cathelicidins
18.
Curr Opin Infect Dis ; 23(1): 64-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19918177

ABSTRACT

PURPOSE OF REVIEW: Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. RECENT FINDINGS: H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. SUMMARY: A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.


Subject(s)
Chancroid/microbiology , Haemophilus ducreyi/pathogenicity , Chancroid/immunology , Haemophilus ducreyi/immunology , Host-Pathogen Interactions , Humans
19.
J Infect Dis ; 200(4): 590-8, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19572804

ABSTRACT

The role of natural killer (NK) cells in the host response to Haemophilus ducreyi infection is unclear. In pustules obtained from infected human volunteers, there was an enrichment of CD56bright NK cells bearing the activation markers CD69 and HLA-DR, compared with peripheral blood. To study the mechanism by which H. ducreyi activated NK cells, we used peripheral blood mononuclear cells from uninfected volunteers. H. ducreyi activated NK cells only in the presence of antigen-presenting cells. H. ducreyi-infected monocytes and monocyte-derived macrophages activated NK cells in a contact- and interleukin-18 (IL-18)-dependent manner, whereas monocyte-derived dendritic cells induced NK activation through soluble IL-12. More lesional NK cells than peripheral blood NK cells produced IFN-gamma in response to IL-12 and IL-18. We conclude that NK cells are recruited to experimental lesions and likely are activated by infected macrophages and dendritic cells. IFN-gamma produced by lesional NK cells may facilitate phagocytosis of H. ducreyi.


Subject(s)
Chancroid/immunology , Chancroid/microbiology , Haemophilus ducreyi , Killer Cells, Natural/physiology , Lymphocyte Activation/physiology , Adult , Female , Humans , Lipopolysaccharide Receptors/metabolism , Macrophages/metabolism , Male , Monocytes/metabolism
20.
J Infect Dis ; 200(3): 409-16, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19552526

ABSTRACT

Haemophilus ducreyi 35000HP contains a homologue of the luxS gene, which encodes an enzyme that synthesizes autoinducer 2 (AI-2) in other gram-negative bacteria. H. ducreyi 35000HP produced AI-2 that functioned in a Vibrio harveyi-based reporter system. A H. ducreyi luxS mutant was constructed by insertional inactivation of the luxS gene and lost the ability to produce AI-2. Provision of the H. ducreyi luxS gene in trans partially restored AI-2 production by the mutant. The luxS mutant was compared with its parent for virulence in the human challenge model of experimental chancroid. The pustule-formation rate in 5 volunteers was 93.3% (95% confidence interval, 81.7%-99.9%) at 15 parent sites and 60.0% (95% confidence interval, 48.3%-71.7%) at 15 mutant sites (1-tailed P < .001). Thus, the luxS mutant was partially attenuated for virulence. This is the first report of AI-2 production contributing to the pathogenesis of a genital ulcer disease.


Subject(s)
Bacterial Proteins/metabolism , Carbon-Sulfur Lyases/metabolism , Chancroid/microbiology , Haemophilus ducreyi/genetics , Haemophilus ducreyi/pathogenicity , Adult , Bacterial Proteins/genetics , Biological Assay , Carbon-Sulfur Lyases/genetics , Chancroid/pathology , Female , Humans , Male , Middle Aged , Mutation , Skin/microbiology , Skin/pathology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...