Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Acta Biotheor ; 69(2): 151-172, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33128651

ABSTRACT

The static properties of leaves with parallel venation from terrestrial orchids of the genus Epipactis were modelled as coupled elastic rods using the geometrically exact Cosserat theory and the resulting boundary-value problem was solved numerically using a method from Shampine, Muir and Xu. The response of the leaf structure to the applied force was obtained from preliminary measurements. These measurements allowed the Young's modulus of the Epipactis leaves to be determined. The appearance of wrinkles and undulation characteristics for some leaves has been attributed to the small torsional stiffness of the leaf edges.


Subject(s)
Plant Leaves , Elastic Modulus , Elasticity
2.
Electrophoresis ; 20(12): 2493-500, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10499342

ABSTRACT

The phenomenon of electrophoresis in free solution has been studied theoretically down to the molecular level for decades. In addition, intermolecular photo-induced proton transfer reactions, which occur in a wide class of molecules (phenols and aminoarenes) as well as proteins (green fluorescent protein), were also studied extensively. However, the study of the effect of light-induced electrophoretic mobility changes of the analytes in electrophoresis was begun only recently. In the present work, capillary zone electrophoresis was chosen as the environment to measure the magnitude of these electrophoretic mobility shifts induced by light. Background electrolytes (running electrolytes) with high refractive indices were developed, allowing the capillary to work like an optical fiber. The experimental conditions for obtaining stable coupling and guided laser light along the liquid core are discussed. Experimental evidence of band compression is observed, leading to a solitary wave behavior of the analyte band (2-naphthol). These solitary waves result from competition between thermal diffusion (dispersion mechanism) and a nonlinear (band compression) effect due to the combined electrophoresis phenomenon and absorption of guided light by the molecules of the band (which are subjected to a "reversible intermolecular proton transfer reaction" as one of their decay routes). The possibilities of applying this effect to different methods and techniques are also discussed.


Subject(s)
Electrophoresis, Capillary/methods , Buffers , Light , Naphthols
3.
5.
J Immunol ; 148(8): 2522-9, 1992 Apr 15.
Article in English | MEDLINE | ID: mdl-1313845

ABSTRACT

Previous studies have revealed that the RE strain of HSV type 1 (HSV-1) induces a tissue-destructive inflammatory response in the mouse cornea that is mediated by CD4 T lymphocytes, whereas the KOS strain of HSV-1 preferentially activates CD8 T lymphocytes in the cornea. Langerhans cells (LC) normally reside only at the periphery of the cornea but can migrate centripetally after HSV-1 infection. We studied the relative contribution of LC to the corneal inflammation induced by the KOS and RE strains of HSV-1. Ten days after infection, the central one-third of RE HSV-1-infected corneas contained an average of 5.7 LC/high-power field compared with 0.6 LC/high-power field in KOS-infected corneas. We hypothesized that the increased density of LC in RE HSV-1-infected corneas at the time of T lymphocyte infiltration contributed to the preferential activation of CD4 T lymphocytes in these corneas. To test this hypothesis, we gave mice a low dose of UV-B corneal irradiation (150 mJ/cm2) 1 day before infection with HSV-1. UV-B irradiation effectively prevented the migration of LC into the central cornea when measured 10 or 21 days after corneal infection with either HSV-1 strain. UV-B corneal irradiation had no effect on the CTL response to HSV-1 Ag in the regional lymph nodes after corneal infection with KOS or RE HSV-1. The delayed-type hypersensitivity response induced by both strains of virus, when measured 8 and 14 days after corneal infection, was significantly reduced by UV-B irradiation. UV-B irradiation significantly reduced the incidence (p = 0.0023) and severity (p = 0.0008) of corneal stromal disease induced by RE HSV-1 but did not significantly affect the stromal disease induced by KOS HSV-1. To distinguish between the effect of UV-B treatment on the afferent and efferent arms of the Ir in mice, we administered UV-B treatment to one eye, followed 24 h later by RE HSV-1 infection of both eyes. These mice developed a normal delayed-type hypersensitivity response, and stromal inflammation developed normally in the untreated eye. However, stromal inflammation was significantly reduced in the treated eye. Our findings suggest that LC play a critical role in the activation of HSV-reactive CD4 T lymphocytes in the cornea. Moreover, the type of corneal inflammation induced by different strains of HSV-1 may reflect their differential capacity to induce LC migration into the central cornea.


Subject(s)
CD4 Antigens/physiology , CD8 Antigens/physiology , Cornea/immunology , Keratitis, Herpetic/etiology , Langerhans Cells/physiology , T-Lymphocytes/physiology , Animals , Cornea/microbiology , Female , Keratitis, Herpetic/immunology , Keratitis, Herpetic/pathology , Mice , Simplexvirus/radiation effects , Ultraviolet Rays , Virus Replication/radiation effects
6.
Phys Rev A ; 44(5): 3144-3151, 1991 Sep 01.
Article in English | MEDLINE | ID: mdl-9906314
SELECTION OF CITATIONS
SEARCH DETAIL
...