Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13852, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879681

ABSTRACT

Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.


Subject(s)
Asphyxia , Dimethyl Fumarate , Disease Models, Animal , Heart Arrest , Mitochondria , Animals , Heart Arrest/metabolism , Heart Arrest/drug therapy , Asphyxia/metabolism , Asphyxia/drug therapy , Asphyxia/complications , Swine , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Humans , Myocardium/metabolism , Myocardium/pathology , Oxidative Phosphorylation/drug effects
2.
Mol Cell Biochem ; 478(6): 1231-1244, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36282352

ABSTRACT

Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of ß-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.


Subject(s)
Prodrugs , Rats , Animals , Prodrugs/pharmacology , Prodrugs/metabolism , Succinic Acid/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Electron Transport Complex I/metabolism , Fluoroacetates/pharmacology , Fluoroacetates/metabolism
3.
Sci Rep ; 12(1): 20329, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36434021

ABSTRACT

Pesticides account for hundreds of millions of cases of acute poisoning worldwide each year, with organophosphates (OPs) being responsible for the majority of all pesticide-related deaths. OPs inhibit the enzyme acetylcholinesterase (AChE), which leads to impairment of the central- and peripheral nervous system. Current standard of care (SOC) alleviates acute neurologic-, cardiovascular- and respiratory symptoms and reduces short term mortality. However, survivors often demonstrate significant neurologic sequelae. This highlights the critical need for further development of adjunctive therapies with novel targets. While the inhibition of AChE is thought to be the main mechanism of injury, mitochondrial dysfunction and resulting metabolic crisis may contribute to the overall toxicity of these agents. We hypothesized that the mitochondrially targeted succinate prodrug NV354 would support mitochondrial function and reduce brain injury during acute intoxication with the OP diisopropylfluorophosphate (DFP). To this end, we developed a rat model of acute DFP intoxication and evaluated the efficacy of NV354 as adjunctive therapy to SOC treatment with atropine and pralidoxime. We demonstrate that NV354, in combination with atropine and pralidoxime therapy, significantly improved cerebral mitochondrial complex IV-linked respiration and reduced signs of brain injury in a rodent model of acute DFP exposure.


Subject(s)
Brain Injuries , Organophosphate Poisoning , Prodrugs , Animals , Rats , Organophosphate Poisoning/drug therapy , Atropine/pharmacology , Atropine/therapeutic use , Prodrugs/pharmacology , Isoflurophate/toxicity , Succinic Acid , Acetylcholinesterase/metabolism , Rodentia/metabolism , Succinates , Mitochondria/metabolism , Brain Injuries/drug therapy
4.
Front Oncol ; 12: 768954, 2022.
Article in English | MEDLINE | ID: mdl-35664801

ABSTRACT

Hypopharyngeal cancer is a poorly characterized type of head and neck squamous cell carcinoma (HNSCC) with bleak prognosis and only few studies focusing specifically on the genomic profile of this type of cancer. We performed molecular profiling of 48 HPV (Human Papilloma Virus)-negative tumor samples including 23 originating from the hypopharynx and 25 from the larynx using a targeted next-generation sequencing approach. Among genes previously described as significantly mutated, TP53, FAT1, NOTCH1, KMT2C, and CDKN2A were found to be most frequently mutated. We also found that more than three-quarters of our patients harbored candidate actionable or prognostic alterations in genes belonging to RTK/ERK/PI3K, cell-cycle, and DNA-damage repair pathways. Using previously published data we compared 67 hypopharyngeal cancers to 595 HNSCC from other sites and found no prominent differences in mutational frequency except for CASP8 and HRAS genes. Since we observed relatively frequent mutations of KTM2C (MLL3) in our dataset, we analyzed their role, in vitro, by generating a KMT2C-mutant hypopharyngeal cancer cell line FaDu with CRISPR-Cas9. We demonstrated that KMT2C loss-of-function mutations resulted in increased colony formation and proliferation, in concordance with previously published results. In summary, our results show that the mutational profile of hypopharyngeal cancers might be similar to the one observed for other head and neck cancers with respect to minor differences and includes multiple candidate actionable and prognostic genetic alterations. We also demonstrated, for the first time, that the KMT2C gene may play a role of tumor suppressor in HNSCC, which opens new possibilities in the search for new targeted treatment approaches.

5.
Toxicol Rep ; 7: 1263-1271, 2020.
Article in English | MEDLINE | ID: mdl-33005568

ABSTRACT

The objective of this study was to compare the use of hydroxocobalamin (B12a) and a succinate prodrug to evaluate for improvement in mitochondrial function in an in vitro model of cyanide poisoning. Peripheral blood mononuclear cells (PBMC) and human aortic smooth muscle cells (HASMC) incubated with 50 mM of sodium cyanide (CN) for five minutes serving as the CN group compared to controls. We investigated the following: (1) Mitochondrial respiration; (2) Superoxide and mitochondrial membrane potential with microscopy; (3) Citrate synthase protein expression. All experiments were performed with a cell concentration of 2-3 × 106 cells/ml for both PBMC and HASMC. There were four conditions: (1) Control (no exposure); (2) Cyanide (exposure only); (3) B12a (cyanide exposure followed by B12a treatment); (4) NV118 (cyanide followed by NV118 treatment). In this study the key findings include: (1) Improvement in key mitochondrial respiratory states with the succinate prodrug (NV118) but not B12a; (2) Attenuation of superoxide production with treatment of NV118 but not with B12a treatment; (3) The changes in respiration were not secondary to increased mitochondrial content as measured by citrate synthase; (4) The use of easily accessible human blood cells showed similar mitochondrial response to both cyanide and treatment to HASMC. The use of a succinate prodrug to circumvent partial CIV inhibition by cyanide with clear reversal of cellular respiration and superoxide production that was not attributed to changes in mitochondrial content not seen by the use of B12a.

6.
Toxicol In Vitro ; 65: 104794, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32057835

ABSTRACT

Human exposure to carbamates and organophosphates poses a serious threat to society and current pharmacological treatment is solely targeting the compounds' inhibitory effect on acetylcholinesterase. This toxicological pathway, responsible for acute symptom presentation, can be counteracted with currently available therapies such as atropine and oximes. However, there is still significant long-term morbidity and mortality. We propose mitochondrial dysfunction as an additional cellular mechanism of carbamate toxicity and suggest pharmacological targeting of mitochondria to overcome acute metabolic decompensation. Here, we investigated the effects on mitochondrial respiratory function of N-succinimidyl N-methylcarbamate (NSNM), a surrogate for carbamate insecticides, ex vivo in human platelets. Characterization of the mitochondrial toxicity of NSNM in platelets revealed a dose-dependent decrease in mitochondral oxygen consumption linked to respiratory chain complex I while the pathway through complex II was unaffected. In intact platelets, an increase in lactate production was seen, due to a compensatory shift towards anaerobic metabolism. Treatment with a cell-permeable succinate prodrug restored the NSNM-induced (100 µM) decrease in mitochondrial oxygen consumption and normalized lactate production to the level of control. We have demonstrated that carbamate-induced mitochondrial complex I dysfunction can be alleviated with a mitochondrial targeted countermeasure: a cell-permeable prodrug of the mitochondrial complex II substrate succinate.


Subject(s)
Carbamates/toxicity , Electron Transport Complex I/metabolism , Insecticides/toxicity , Mitochondria/drug effects , Prodrugs/pharmacology , Succinic Acid/pharmacology , Blood Platelets/metabolism , Cell Membrane Permeability , Cell Respiration/drug effects , Cells, Cultured , Humans , Lactic Acid/metabolism , Mitochondria/metabolism , Oxygen Consumption/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...