Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Dis ; 71(1): 39-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24692291

ABSTRACT

A major cause of treatment failure of infections caused by Pseudomonas aeruginosa is the presence of antibiotic-insensitive persister cells. The mechanism of persister formation in P. aeruginosa is largely unknown, and so far, only few genetic determinants have been linked to P. aeruginosa persistence. Based on a previous high-throughput screening, we here present dnpA (de-N-acetylase involved in persistence; gene locus PA14_66140/PA5002) as a new gene involved in noninherited fluoroquinolone tolerance in P. aeruginosa. Fluoroquinolone tolerance of a dnpA mutant is strongly reduced both in planktonic culture and in a biofilm model, whereas overexpression of dnpA in the wild-type strain increases the persister fraction. In addition, the susceptibility of the dnpA mutant to different classes of antibiotics is not affected. dnpA is part of the conserved LPS core oligosaccharide biosynthesis gene cluster. Based on primary sequence analysis, we predict that DnpA is a de-N-acetylase, acting on an unidentified substrate. Site-directed mutagenesis suggests that this enzymatic activity is essential for DnpA-mediated persistence. A transcriptome analysis indicates that DnpA primarily affects the expression of genes involved in surface-associated processes. We discuss the implications of these findings for future antipersister therapies targeted at chronic P. aeruginosa infections.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Drug Tolerance , Fluoroquinolones/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Acetyltransferases , Gene Deletion , Mutagenesis, Site-Directed
2.
Microbiologyopen ; 2(6): 976-87, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24311555

ABSTRACT

A core component of the α-proteobacterial general stress response (GSR) is the extracytoplasmic function (ECF) sigma factor EcfG, exclusively present in this taxonomic class. Half of the completed α-proteobacterial genome sequences contain two or more copies of genes encoding σ(EcfG) -like sigma factors, with the primary copy typically located adjacent to genes coding for a cognate anti-sigma factor (NepR) and two-component response regulator (PhyR). So far, the widespread occurrence of additional, non-canonical σ(EcfG) copies has not satisfactorily been explained. This study explores the hierarchical relation between Rhizobium etli σ(EcfG1) and σ(EcfG2) , canonical and non-canonical σ(EcfG) proteins, respectively. Contrary to reports in other species, we find that σ(EcfG1) and σ(EcfG2) act in parallel, as nodes of a complex regulatory network, rather than in series, as elements of a linear regulatory cascade. We demonstrate that both sigma factors control unique yet also shared target genes, corroborating phenotypic evidence. σ(EcfG1) drives expression of rpoH2, explaining the increased heat sensitivity of an ecfG1 mutant, while katG is under control of σ(EcfG2) , accounting for reduced oxidative stress resistance of an ecfG2 mutant. We also identify non-coding RNA genes as novel σ(EcfG) targets. We propose a modified model for GSR regulation in R. etli, in which σ(EcfG1) and σ(EcfG2) function largely independently. Based on a phylogenetic analysis and considering the prevalence of α-proteobacterial genomes with multiple σ(EcfG) copies, this model may also be applicable to numerous other species.


Subject(s)
Gene Expression Regulation, Bacterial , Rhizobium etli/physiology , Sigma Factor/metabolism , Stress, Physiological , Models, Biological , Rhizobium etli/genetics
3.
Genome Biol ; 12(2): R17, 2011.
Article in English | MEDLINE | ID: mdl-21324192

ABSTRACT

BACKGROUND: The alarmone (p)ppGpp mediates a global reprogramming of gene expression upon nutrient limitation and other stresses to cope with these unfavorable conditions. Synthesis of (p)ppGpp is, in most bacteria, controlled by RelA/SpoT (Rsh) proteins. The role of (p)ppGpp has been characterized primarily in Escherichia coli and several Gram-positive bacteria. Here, we report the first in-depth analysis of the (p)ppGpp-regulon in an α-proteobacterium using a high-resolution tiling array to better understand the pleiotropic stress phenotype of a relA/rsh mutant. RESULTS: We compared gene expression of the Rhizobium etli wild type and rsh (previously rel) mutant during exponential and stationary phase, identifying numerous (p)ppGpp targets, including small non-coding RNAs. The majority of the 834 (p)ppGpp-dependent genes were detected during stationary phase. Unexpectedly, 223 genes were expressed (p)ppGpp-dependently during early exponential phase, indicating the hitherto unrecognized importance of (p)ppGpp during active growth. Furthermore, we identified two (p)ppGpp-dependent key regulators for survival during heat and oxidative stress and one regulator putatively involved in metabolic adaptation, namely extracytoplasmic function sigma factor EcfG2/PF00052, transcription factor CH00371, and serine protein kinase PrkA. CONCLUSIONS: The regulatory role of (p)ppGpp in R. etli stress adaptation is far-reaching in redirecting gene expression during all growth phases. Genome-wide transcriptome analysis of a strain deficient in a global regulator, and exhibiting a pleiotropic phenotype, enables the identification of more specific regulators that control genes associated with a subset of stress phenotypes. This work is an important step toward a full understanding of the regulatory network underlying stress responses in α-proteobacteria.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Genome, Bacterial , Guanosine Pentaphosphate/metabolism , Guanosine Tetraphosphate/metabolism , Rhizobium etli/genetics , Stress, Physiological/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Guanosine Pentaphosphate/genetics , Guanosine Tetraphosphate/genetics , Oligonucleotide Array Sequence Analysis , RNA, Small Untranslated , Rhizobium etli/growth & development , Transcriptome
4.
J Med Microbiol ; 60(Pt 3): 329-336, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21212150

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that poses a threat in clinical settings due to its intrinsic and acquired resistance to a wide spectrum of antibiotics. Additionally, the presence of a subpopulation of cells surviving high concentrations of antibiotics, called persisters, makes it virtually impossible to eradicate a chronic infection. The mechanism underlying persistence is still unclear, partly due to the fact that it is a non-inherited phenotype. Based on our findings from a previously performed screening effort for P. aeruginosa persistence genes, we hypothesize that crosstalk can occur between two clinically relevant mechanisms: the persistence phenomenon and antibiotic resistance. This was tested by determining the persistence phenotype of P. aeruginosa strains that are resistant to the antibiotic fosfomycin due to either of two unrelated fosfomycin resistance mechanisms. Overexpression of fosA (PA1129) confers fosfomycin resistance by enzymic modification of the antibiotic, and in addition causes a decrease in the number of persister cells surviving ofloxacin treatment. Both phenotypes require the enzymic function of FosA, as mutation of the Arg119 residue abolishes fosfomycin resistance as well as low persistence. The role for fosfomycin resistance mechanisms in persistence is corroborated by demonstrating a similar phenotype in a strain with a mutation in glpT (PA5235), which encodes a glycerol-3-phosphate transporter essential for fosfomycin uptake. These results indicate that fosfomycin resistance, conferred by glpT mutation or by overexpression of fosA, results in a decrease in the number of persister cells after treatment with ofloxacin and additionally stress that further research into the interplay between fosfomycin resistance and persistence is warranted.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Drug Tolerance , Fluoroquinolones/pharmacology , Fosfomycin/pharmacology , Pseudomonas aeruginosa/drug effects , Gene Expression , Genes, Bacterial , Glycerophosphates/metabolism , Humans , Membrane Transport Proteins/genetics , Microbial Viability/drug effects , Ofloxacin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...