Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnol Sci Appl ; 17: 59-76, 2024.
Article in English | MEDLINE | ID: mdl-38504832

ABSTRACT

Background: Atopic dermatitis (eczema) is an inflammatory skin condition with synthetic treatments that induce adverse effects and are ineffective. One of the proposed causes for the development of the condition is the outside-in hypothesis, which states that eczema is caused by a disruption in the skin barrier. These disruptions include developing dry cracked skin, which promotes the production of histamine. Bulbine frutescens (BF) is traditionally used to treat wounds and eczema; however, limited research has been conducted to scientifically validate this. Furthermore, gold nanoparticles (AuNPs) have been used to repair damaged skin; however, no research has been conducted on AuNPs synthesized using BF. Purpose: The study aimed to determine whether BF alleviated skin damage through wound healing, reducing the production of histamine and investigate whether AuNPs synthesized using BF would enhance biological activity. Methods: Four extracts and four synthesized AuNPs were prepared using BF and their antiproliferative and wound healing properties against human keratinocyte cells (HaCaT) were evaluated. Thereafter, the selected samples antiproliferative activity and antihistamine activity against phorbol 12-myristate 13-acetate (PMA) stimulated granulocytes were evaluated. Results: Of the eight samples, the freeze-dried leaf juice (BFE; p < 0.01) extract and its AuNPs (BFEAuNPs; p < 0.05) displayed significant wound closure at 100 µg/mL and were further evaluated. The selected samples displayed a fifty percent inhibitory concentration (IC50) of >200 µg/mL against PMA stimulated granulocytes. Compared to the untreated (media with PMA) control (0.30 ± 0.02 ng/mL), BFEAuNPs significantly inhibited histamine production at a concentration of 100 (p < 0.01) and 50 µg/mL (p < 0.001). Conclusion: BFE and BFEAuNPs stimulated wound closure, while BFEAuNPs significantly inhibited histamine production. Further investigation into BFEAuNPs in vivo wound healing activity and whether it can target histamine-associated receptors on mast cells as a potential mechanism of action should be considered.

2.
Nanotechnology ; 34(46)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37527629

ABSTRACT

Folate receptor-targeted therapy has excellent prospects for the treatment of breast cancer. A non-toxic concentration of folate-conjugated palladium-based nanoparticles was used to target the overexpressed folate receptor on breast cancer cells. The folate-conjugated nanoparticles were tailored to accumulate selectively in cancer cells relative to normal cells via the folate receptor. The MDA-MB-231, MDA-MB-468, MCF-7 breast cancer cell lines, and MCF-10A normal cell lines were used in the study. Qualitative and quantitative analysis of nanoparticle cellular uptake and accumulation was conducted using transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy. The findings proved that folate-conjugated palladium nanoparticles successfully and preferentially accumulated in breast cancer cells. We conclude that folate-conjugated palladium nanoparticles can be potentially used to target breast cancer cells for radiopharmaceutical applications.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Palladium/pharmacology , Metal Nanoparticles/chemistry , Folic Acid/chemistry , Nanoparticles/chemistry , MCF-7 Cells , Cell Line, Tumor
3.
Dalton Trans ; 52(1): 70-80, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36458482

ABSTRACT

Colloidal synthesis of CsPbBr3 nanoparticles (NPs) is often carried out by involving polar solvents that threaten the chemical stability of the NPs. Here, we report a polar-solvent-free synthesis of all-inorganic CsPbBr3 NPs by employing an ultrasonic bath approach. The phase evolution of the CsPbBr3 NPs strongly depended on the duration of ultrasonication. A secondary phase of Cs4PbBr6 was also found to evolve, which emitted narrow blue-emission bands. For the longest period of ultrasonication (12 h), the CsPbBr3 and Cs4PbBr6 phases co-existed to produce blue and green emission bands with a photoluminescence quantum yield (PLQY) of 53%. The purest form of CsPbBr3 phases was observed for the NPs produced by sonicating the precursors for 8 h. They exhibited narrow green emission bands with a PLQY of 50%. The power-conversion efficiency of a silicon solar cell was remarkably increased when coated with the CsPbBr3 NPs, thus, proving its potential to be used as a spectral downshifter for Si solar cells.

4.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36015081

ABSTRACT

Gold nanoparticles from plant extracts and their bioactive compounds to treat various maladies have become an area of interest to many researchers. Acne vulgaris is an inflammatory disease of the pilosebaceous unit caused by the opportunistic bacteria Cutibacterium acnes and Staphylococcus epidermis. These bacteria are not only associated with inflammatory acne but also with prosthetic-implant-associated infections and wounds. Studies have hypothesised that these bacteria have a mutualistic relationship and act as a multispecies system. It is believed that these bacteria form a multispecies biofilm under various conditions and that these biofilms contribute to increased antibiotic resistance compared to single-species biofilms. This study aimed to investigate the antibacterial and wound healing potential of synthesised gold nanoparticles (AuNPs) from an endemic South African plant, Plectranthus aliciae (AuNPPAE), its major compound rosmarinic acid (AuNPRA) and a widely used antibiotic, tetracycline (AuNPTET). Synthesised gold nanoparticles were successfully formed and characterised using ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ-potential), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED), and they were investigated for stability under various biological conditions. Stable nanoparticles were formed with ζ-potentials of -18.07 ± 0.95 mV (AuNPPAE), -21.5 ± 2.66 mV (AuNPRA), and -39.83 ± 1.6 mV (AuNPTET). The average diameter of the AuNPs was 71.26 ± 0.44 nm, 29.88 ± 3.30 nm, and 132.6 ± 99.5 nm for AuNPPAE, AuNPRA, and AuNPTET, respectively. In vitro, biological studies confirmed that although no antibacterial activity or biofilm inhibition was observed for the nanoparticles tested on the multispecies C. acnes and S. epidermis systems, these samples had potential wound closure activity. Gold nanoparticles formed with rosmarinic acid significantly increased wound closure by 21.4% at 25% v/v (≈29.2 µg/mL) compared to the negative cell control and the rosmarinic acid compound at the highest concentration tested of 500 µg/mL. This study concluded that green synthesised gold nanoparticles of rosmarinic acid could potentially be used for treating wounds.

5.
Front Cell Dev Biol ; 9: 675064, 2021.
Article in English | MEDLINE | ID: mdl-34589479

ABSTRACT

The human skin is home to millions of bacteria, fungi, and viruses which form part of a unique microbiome. Commensal microbes, including Cutibacterium acnes can occasionally become opportunistic resulting in the onset of dermatological diseases such as acne. Acne is defined as a chronic inflammatory disorder based on its ability to persist for long periods throughout an individual's life. The synthesis of gold nanoparticles (AuNPs) was performed using the bottom-up approach by reduction of a gold salt (HAuCl4.3H2O) by the methanol extract (HO-MeOH) and aqueous decoction prepared from the dried aerial parts of Helichrysum odoratissimum (HO-Powder). The HO-MeOH and HO-Powder AuNPs were prepared as unstabilised (-GA) or stabilized (+GA) by the omission or addition of Gum Arabic (GA) as the capping agent. The characterization of the AuNPs was performed using Transmission Electron Microscopy (TEM), dynamic light scattering (DLS), Ultraviolet-Visual spectroscopy (UV-Vis), Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD) and Zeta-potential. The MBIC50 values for HO-MeOH - GA and HO-MeOH + GA were 1.79 ± 0.78% v/v and 0.22 ± 0.16% v/v, respectively. The HO-Powder AuNPs showed potent inhibition of C. acnes cell adhesion to the 96-well plates. The HO-MeOH - GA and HO-Powder + GA exhibited IC50 of 22.01 ± 6.13% v/v and 11.78 ± 1.78% v/v, respectively. The activity of the AuNPs validated the anti-adhesion activity of the methanol extract in the crude form. The study emphasizes the selectivity of H. odoratissimum AuNPs for the prevention of C. acnes cell adhesion and not antimicrobial activity, which may prevent the emergence of resistant strains of C. acnes through reduced bactericidal or bacteriostatic activity, while targeting mechanisms of pathogenesis.

6.
Materials (Basel) ; 12(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717395

ABSTRACT

Alloying copper into pure titanium has recently allowed the development of antibacterial alloys. The alloying of biocompatible elements (Nb, Ta and Zr) into pure titanium has also achieved higher strengths for a new alloy of Ti-1.6 wt.% Nb-10 wt.% Ta-1.7 wt.% Zr (TNTZ), where strength was closer to Ti-6Al-4V and higher than grade 4 titanium. In the present study, as a first step towards development of a novel antibacterial material with higher strength, the existing TNTZ was alloyed with copper to investigate the resultant microstructural changes and properties. The initial design and modelling of the alloy system was performed using the calculation of phase diagrams (CALPHAD) methods, to predict the phase transformations in the alloy. Following predictions, the alloys were produced using arc melting with appropriate heat treatments. The alloys were characterized using energy dispersive X-ray spectroscopy in scanning transmission electron microscopy (STEM-EDS) with transmission Kikuchi diffraction (TKD). The manufactured alloys had a three-phased crystal structure that was found in the alloys with 3 wt.% Cu and higher, in line with the modelled alloy predictions. The phases included the α-Ti (HCP-Ti) with some Ta present in the crystal, Ti2Cu, and a bright phase with Ti, Cu and Ta in the crystal. The Ti2Cu crystals tended to precipitate in the grain boundaries of the α-Ti phase and bright phase. The hardness of the alloys increased with increased Cu addition, as did the presence of the Ti2Cu phase. Further studies to optimize the alloy could result in a suitable material for dental implants.

SELECTION OF CITATIONS
SEARCH DETAIL
...