Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
J Am Heart Assoc ; 8(20): e012806, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31594443

ABSTRACT

Background In the presence of arterial stenosis, collateral artery growth (arteriogenesis) can alleviate ischemia and preserve tissue function. In patients with poorly developed collateral arteries, Gal-2 (galectin 2) expression is increased. In vivo administration of Gal-2 inhibits arteriogenesis. Blocking of Gal-2 potentially stimulates arteriogenesis. This study aims to investigate the effect of Gal-2 inhibition on arteriogenesis and macrophage polarization using specific single-domain antibodies. Methods and Results Llamas were immunized with Gal-2 to develop anti-Gal-2 antibodies. Binding of Gal-2 to monocytes and binding inhibition of antibodies were quantified. To test arteriogenesis in vivo, Western diet-fed LDLR.(low-density lipoprotein receptor)-null Leiden mice underwent femoral artery ligation and received treatment with llama antibodies 2H8 or 2C10 or with vehicle. Perfusion restoration was measured with laser Doppler imaging. In the hind limb, arterioles and macrophage subtypes were characterized by histology, together with aortic atherosclerosis. Llama-derived antibodies 2H8 and 2C10 strongly inhibited the binding of Gal-2 to monocytes (93% and 99%, respectively). Treatment with these antibodies significantly increased perfusion restoration at 14 days (relative to sham, vehicle: 41.3±2.7%; 2H8: 53.1±3.4%, P=0.016; 2C10: 52.0±3.8%, P=0.049). In mice treated with 2H8 or 2C10, the mean arteriolar diameter was larger compared with control (vehicle: 17.25±4.97 µm; 2H8: 17.71±5.01 µm; 2C10: 17.84±4.98 µm; P<0.001). Perivascular macrophages showed a higher fraction of the M2 phenotype in both antibody-treated animals (vehicle: 0.49±0.24; 2H8: 0.73±0.15, P=0.007; 2C10: 0.75±0.18, P=0.006). In vitro antibody treatment decreased the expression of M1-associated cytokines compared with control (P<0.05 for each). Atherosclerotic lesion size was comparable between groups (overall P=0.59). Conclusions Inhibition of Gal-2 induces a proarteriogenic M2 phenotype in macrophages, improves collateral artery growth, and increases perfusion restoration in a murine hind limb model.


Subject(s)
Antibodies/pharmacology , Atherosclerosis/metabolism , Collateral Circulation/physiology , Femoral Artery/metabolism , Galectin 2/antagonists & inhibitors , Hindlimb/blood supply , Animals , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Disease Models, Animal , Female , Femoral Artery/physiopathology , Galectin 2/metabolism , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
3.
Basic Res Cardiol ; 111(4): 38, 2016 07.
Article in English | MEDLINE | ID: mdl-27146510

ABSTRACT

Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.


Subject(s)
CD40 Antigens/immunology , Coronary Artery Disease/pathology , Macrophages/pathology , Animals , Coronary Artery Disease/immunology , Humans , Macrophages/immunology
4.
JACC Cardiovasc Interv ; 9(6): 602-13, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-27013161

ABSTRACT

OBJECTIVES: The aim of this study was to determine the effects of an acute myocardial infarction (AMI) on baseline and hyperemic flow in both culprit and nonculprit arteries. BACKGROUND: An impaired coronary flow reserve (CFR) after AMI is related to worse outcomes. The individual contribution of resting and hyperemic flow to the reduction of CFR is unknown. Furthermore, it is unclear whether currently used experimental models of AMI resemble the clinical situation with respect to coronary flow parameters. METHODS: Intracoronary Doppler flow velocity measurements were obtained in culprit and nonculprit arteries immediately after successfully revascularized ST-segment elevation myocardial infarction (n = 40). Stable patients without obstructive coronary artery disease served as control subjects and were selected by propensity-score matching (n = 40). Similar measurements in an AMI porcine model were taken both before and immediately after 75-min balloon occlusion of the left circumflex artery (n = 11). RESULTS: In the culprit artery, CFR was 36% lower than in matched control subjects (Δ = -0.9; 1.8 ± 0.9 vs. 2.8 ± 0.7; p < 0.001) with consistent observations in swine (Δ = -0.9; 1.5 ± 0.4 vs. 2.4 ± 0.9 for after and before AMI, respectively; p = 0.04). An increased baseline and a decreased hyperemic flow contributed to the reduction in CFR in both patients (baseline flow: Δ = +5 and hyperemic flow: Δ = -7 cm/s) and swine (baseline flow: Δ = +8 and hyperemic flow: Δ = -6 cm/s). Similar changes were observed in nonculprit arteries (CFR: 2.8 ± 0.7 vs. 2.0 ± 0.7 for STEMI patients and control subjects; p < 0.001). CFR significantly correlated with infarct size as a percentage of the left ventricle in both patients (r = -0.48; p = 0.001) and swine (r = -0.61; p = 0.047). CONCLUSIONS: CFR in both culprit and nonculprit coronary arteries decreases after AMI with contributions from both an increased baseline flow and a decreased hyperemic flow. The decreased CFR after AMI in culprit and nonculprit vessels is not a result of pre-existing microvascular dysfunction, but represents a combination of post-occlusive hyperemia, myocardial necrosis, hemorrhagic microvascular injury, compensatory hyperkinesis, and neurohumoral vasoconstriction.


Subject(s)
Coronary Circulation , Coronary Vessels/physiopathology , ST Elevation Myocardial Infarction/physiopathology , Aged , Animals , Biopsy , Blood Flow Velocity , Case-Control Studies , Coronary Angiography , Coronary Vessels/diagnostic imaging , Disease Models, Animal , Echocardiography, Doppler , Female , Humans , Hyperemia/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Percutaneous Coronary Intervention , Propensity Score , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , Swine , Time Factors , Treatment Outcome
5.
Vascul Pharmacol ; 81: 31-41, 2016 06.
Article in English | MEDLINE | ID: mdl-26945624

ABSTRACT

Galectins are an ancient family of ß-galactoside-specific lectins and consist of 15 different types, each with a specific function. They play a role in the immune system, inflammation, wound healing and carcinogenesis. In particular the role of galectin in cancer is widely studied. Lately, the role of galectins in the development of cardiovascular disease has gained attention. Worldwide cardiovascular disease is still the leading cause of death. In ischemic heart disease, atherosclerosis limits adequate blood flow. Angiogenesis and arteriogenesis are highly important mechanisms relieving ischemia by restoring perfusion to the post-stenotic myocardial area. Galectins act ambiguous, both relieving ischemia and accelerating atherosclerosis. Atherosclerosis can ultimately lead to myocardial infarction or ischemic stroke, which are both associated with galectins. There is also a role for galectins in the development of myocarditis by their influence on inflammatory processes. Moreover, galectin acts as a biomarker for the severity of myocardial ischemia and heart failure. This review summarizes the association between galectins and the development of multiple cardiovascular diseases such as myocarditis, ischemic stroke, myocardial infarction, heart failure and atrial fibrillation. Furthermore it focuses on the association between galectin and more general mechanisms such as angiogenesis, arteriogenesis and atherosclerosis.


Subject(s)
Cardiovascular Diseases/metabolism , Galectins/metabolism , Animals , Biomarkers/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Humans , Neovascularization, Pathologic , Neovascularization, Physiologic , Predictive Value of Tests , Prognosis , Severity of Illness Index , Signal Transduction
7.
Eur Heart J ; 34(30): 2346-53, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23594591

ABSTRACT

AIMS: Lack of gadolinium-contrast wash-in on first-pass perfusion imaging, early gadolinium-enhanced imaging, or late gadolinium-enhanced (LGE) cardiovascular magnetic resonance (CMR) imaging after revascularized ST-elevation myocardial infarction (STEMI) is commonly referred to as microvascular obstruction (MVO). Additionally, T2-weighted imaging allows for the visualization of infarct-related oedema and intramyocardial haemorrhage (IMH) within the infarction. However, the exact histopathological correlate of the contrast-devoid core and its relation to IMH is unknown. METHODS AND RESULTS: In eight Yorkshire swine, the circumflex coronary artery was occluded for 75 min by a balloon catheter. After 7 days, CMR with cine imaging, T2-weighted turbospinecho, and LGE was performed. Cardiovascular magnetic resonance images were compared with histological findings after phosphotungstic acid-haematoxylin and anti-CD31/haematoxylin staining. These findings were compared with CMR findings in 27 consecutive PCI-treated STEMI patients, using the same scanning protocol. In the porcine model, the infarct core contained extensive necrosis and erythrocyte extravasation, without intact vasculature and hence, no MVO. The surrounding-gadolinium-enhanced-area contained granulation tissue, leucocyte infiltration, and necrosis with morphological intact microvessels containing microthrombi, without erythrocyte extravasation. Areas with IMH (median size 1.92 [0.36-5.25] cm(3)) and MVO (median size 2.19 [0.40-4.58] cm(3)) showed close anatomic correlation [intraclass correlation coefficient (ICC) 0.85, r = 0.85, P = 0.03]. Of the 27 STEMI patients, 15 had IMH (median size 6.60 [2.49-9.79] cm(3)) and 16 had MVO (median size 4.31 [1.05-7.57] cm(3)). Again, IMH and MVO showed close anatomic correlation (ICC 0.87, r = 0.93, P < 0.001). CONCLUSION: The contrast-devoid core of revascularized STEMI contains extensive erythrocyte extravasation with microvascular damage. Attenuating the reperfusion-induced haemorrhage may be a novel target in future adjunctive STEMI treatment.


Subject(s)
Cardiomyopathies/pathology , Coronary Occlusion/pathology , Hemorrhage/pathology , Myocardial Infarction/pathology , Adult , Aged , Animals , Balloon Occlusion , Contrast Media , Coronary Thrombosis/pathology , Disease Models, Animal , Female , Humans , Magnetic Resonance Angiography , Magnetic Resonance Imaging, Cine , Male , Meglumine , Microvessels/pathology , Middle Aged , Myocardial Infarction/therapy , Myocardial Revascularization/adverse effects , Necrosis/pathology , Organometallic Compounds , Percutaneous Coronary Intervention , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...