Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 28(2): 194-209, 2022 02.
Article in English | MEDLINE | ID: mdl-34732567

ABSTRACT

Each day, about 1012 erythrocytes and platelets are released into the bloodstream. This substantial output from hematopoietic stem cells is tightly regulated by transcriptional and epigenetic factors. Whether and how circular RNAs (circRNAs) contribute to the differentiation and/or identity of hematopoietic cells is to date not known. We recently reported that erythrocytes and platelets contain the highest levels and numbers of circRNAs among hematopoietic cells. Here, we provide the first detailed analysis of circRNA expression during erythroid and megakaryoid differentiation. CircRNA expression not only significantly increased upon enucleation, but also had limited overlap between progenitor cells and mature cells, suggesting that circRNA expression stems from regulated processes rather than resulting from mere accumulation. To study circRNA function in hematopoiesis, we first compared the expression levels of circRNAs with the translation efficiency of their mRNA counterpart. We found that only one out of 2531 (0.04%) circRNAs associated with mRNA-translation regulation. Furthermore, irrespective of thousands of identified putative open reading frames, deep ribosome-footprinting sequencing, and mass spectrometry analysis provided little evidence for translation of endogenously expressed circRNAs. In conclusion, circRNAs alter their expression profile during terminal hematopoietic differentiation, yet their contribution to regulate cellular processes remains enigmatic.


Subject(s)
Hematopoiesis , RNA, Circular/metabolism , RNA, Messenger/genetics , Cells, Cultured , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Protein Biosynthesis , RNA, Circular/genetics , RNA, Messenger/metabolism , Transcriptome
2.
Science ; 345(6204): 1251033, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25258084

ABSTRACT

Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.


Subject(s)
Alternative Splicing , Cell Lineage/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Genetic Variation , Hematopoietic Stem Cells/metabolism , Humans , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , RNA-Binding Proteins/metabolism , Thrombopoiesis/genetics , Transcriptome
3.
Haematologica ; 99(10): 1555-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25107888

ABSTRACT

MEIS1 is a transcription factor expressed in hematopoietic stem and progenitor cells and in mature megakaryocytes. This biphasic expression of MEIS1 suggests that the function of MEIS1 in stem cells is distinct from its function in lineage committed cells. Mouse models show that Meis1 is required for renewal of stem cells, but the function of MEIS1 in human hematopoietic progenitor cells has not been investigated. We show that two MEIS1 splice variants are expressed in hematopoietic progenitor cells. Constitutive expression of both variants directed human hematopoietic progenitors towards a megakaryocyte-erythrocyte progenitor fate. Ectopic expression of either MEIS1 splice variant in common myeloid progenitor cells, and even in granulocyte-monocyte progenitors, resulted in increased erythroid differentiation at the expense of granulocyte and macrophage differentiation. Conversely, silencing MEIS1 expression in progenitor cells induced a block in erythroid expansion and decreased megakaryocytic colony formation capacity. Gene expression profiling revealed that both MEIS1 splice variants induce a transcriptional program enriched for erythroid and megakaryocytic genes. Our results indicate that MEIS1 expression induces lineage commitment towards a megakaryocyte-erythroid progenitor cell fate in common myeloid progenitor cells through activation of genes that define a megakaryocyte-erythroid-specific gene expression program.


Subject(s)
Erythroid Cells/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Megakaryocytes/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Alternative Splicing , Antigens, CD34/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cluster Analysis , Erythroid Cells/cytology , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , Gene Expression Profiling , Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Megakaryocyte-Erythroid Progenitor Cells/cytology , Megakaryocyte-Erythroid Progenitor Cells/metabolism , Megakaryocytes/cytology , Myeloid Ecotropic Viral Integration Site 1 Protein , Thrombopoiesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...