Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 27(7): 1376-1386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38914828

ABSTRACT

Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been difficult. In this study, we use human brain and retina organoid models and present single-cell profiling of H3K27ac, H3K27me3 and H3K4me3 histone modifications from progenitor to differentiated neural fates to reconstruct the epigenomic trajectories regulating cell identity acquisition. We capture transitions from pluripotency through neuroepithelium to retinal and brain region and cell type specification. Switching of repressive and activating epigenetic modifications can precede and predict cell fate decisions at each stage, providing a temporal census of gene regulatory elements and transcription factors. Removing H3K27me3 at the neuroectoderm stage disrupts fate restriction, resulting in aberrant cell identity acquisition. Our single-cell epigenome-wide map of human neural organoid development serves as a blueprint to explore human cell fate determination.


Subject(s)
Epigenesis, Genetic , Epigenomics , Organoids , Single-Cell Analysis , Humans , Epigenomics/methods , Brain/cytology , Pluripotent Stem Cells/physiology , Cell Differentiation/physiology , Cell Differentiation/genetics , Retina/cytology , Retina/growth & development , Histones/metabolism
2.
Nature ; 621(7978): 365-372, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36198796

ABSTRACT

Self-organizing neural organoids grown from pluripotent stem cells1-3 combined with single-cell genomic technologies provide opportunities to examine gene regulatory networks underlying human brain development. Here we acquire single-cell transcriptome and accessible chromatin data over a dense time course in human organoids covering neuroepithelial formation, patterning, brain regionalization and neurogenesis, and identify temporally dynamic and brain-region-specific regulatory regions. We developed Pando-a flexible framework that incorporates multi-omic data and predictions of transcription-factor-binding sites to infer a global gene regulatory network describing organoid development. We use pooled genetic perturbation with single-cell transcriptome readout to assess transcription factor requirement for cell fate and state regulation in organoids. We find that certain factors regulate the abundance of cell fates, whereas other factors affect neuronal cell states after differentiation. We show that the transcription factor GLI3 is required for cortical fate establishment in humans, recapitulating previous research performed in mammalian model systems. We measure transcriptome and chromatin accessibility in normal or GLI3-perturbed cells and identify two distinct GLI3 regulomes that are central to telencephalic fate decisions: one regulating dorsoventral patterning with HES4/5 as direct GLI3 targets, and one controlling ganglionic eminence diversification later in development. Together, we provide a framework for how human model systems and single-cell technologies can be leveraged to reconstruct human developmental biology.


Subject(s)
Brain , Cell Lineage , Gene Expression Profiling , Gene Expression Regulation , Organoids , Humans , Brain/cytology , Brain/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Organoids/cytology , Organoids/metabolism , Transcription Factors/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...