Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Artif Intell ; 6(3): e230079, 2024 May.
Article in English | MEDLINE | ID: mdl-38477661

ABSTRACT

Purpose To evaluate the impact of an artificial intelligence (AI) assistant for lung cancer screening on multinational clinical workflows. Materials and Methods An AI assistant for lung cancer screening was evaluated on two retrospective randomized multireader multicase studies where 627 (141 cancer-positive cases) low-dose chest CT cases were each read twice (with and without AI assistance) by experienced thoracic radiologists (six U.S.-based or six Japan-based radiologists), resulting in a total of 7524 interpretations. Positive cases were defined as those within 2 years before a pathology-confirmed lung cancer diagnosis. Negative cases were defined as those without any subsequent cancer diagnosis for at least 2 years and were enriched for a spectrum of diverse nodules. The studies measured the readers' level of suspicion (on a 0-100 scale), country-specific screening system scoring categories, and management recommendations. Evaluation metrics included the area under the receiver operating characteristic curve (AUC) for level of suspicion and sensitivity and specificity of recall recommendations. Results With AI assistance, the radiologists' AUC increased by 0.023 (0.70 to 0.72; P = .02) for the U.S. study and by 0.023 (0.93 to 0.96; P = .18) for the Japan study. Scoring system specificity for actionable findings increased 5.5% (57% to 63%; P < .001) for the U.S. study and 6.7% (23% to 30%; P < .001) for the Japan study. There was no evidence of a difference in corresponding sensitivity between unassisted and AI-assisted reads for the U.S. (67.3% to 67.5%; P = .88) and Japan (98% to 100%; P > .99) studies. Corresponding stand-alone AI AUC system performance was 0.75 (95% CI: 0.70, 0.81) and 0.88 (95% CI: 0.78, 0.97) for the U.S.- and Japan-based datasets, respectively. Conclusion The concurrent AI interface improved lung cancer screening specificity in both U.S.- and Japan-based reader studies, meriting further study in additional international screening environments. Keywords: Assistive Artificial Intelligence, Lung Cancer Screening, CT Supplemental material is available for this article. Published under a CC BY 4.0 license.


Subject(s)
Artificial Intelligence , Early Detection of Cancer , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Japan , United States/epidemiology , Retrospective Studies , Early Detection of Cancer/methods , Female , Male , Middle Aged , Aged , Sensitivity and Specificity , Radiographic Image Interpretation, Computer-Assisted/methods
3.
Nature ; 577(7788): 89-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31894144

ABSTRACT

Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful1. Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives2. Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.


Subject(s)
Artificial Intelligence/standards , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Early Detection of Cancer/standards , Female , Humans , Mammography/standards , Reproducibility of Results , United Kingdom , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...