Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Biomed Inform ; 155: 104661, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806105

ABSTRACT

BACKGROUND: Establishing collaborations between cohort studies has been fundamental for progress in health research. However, such collaborations are hampered by heterogeneous data representations across cohorts and legal constraints to data sharing. The first arises from a lack of consensus in standards of data collection and representation across cohort studies and is usually tackled by applying data harmonization processes. The second is increasingly important due to raised awareness for privacy protection and stricter regulations, such as the GDPR. Federated learning has emerged as a privacy-preserving alternative to transferring data between institutions through analyzing data in a decentralized manner. METHODS: In this study, we set up a federated learning infrastructure for a consortium of nine Dutch cohorts with appropriate data available to the etiology of dementia, including an extract, transform, and load (ETL) pipeline for data harmonization. Additionally, we assessed the challenges of transforming and standardizing cohort data using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) and evaluated our tool in one of the cohorts employing federated algorithms. RESULTS: We successfully applied our ETL tool and observed a complete coverage of the cohorts' data by the OMOP CDM. The OMOP CDM facilitated the data representation and standardization, but we identified limitations for cohort-specific data fields and in the scope of the vocabularies available. Specific challenges arise in a multi-cohort federated collaboration due to technical constraints in local environments, data heterogeneity, and lack of direct access to the data. CONCLUSION: In this article, we describe the solutions to these challenges and limitations encountered in our study. Our study shows the potential of federated learning as a privacy-preserving solution for multi-cohort studies that enhance reproducibility and reuse of both data and analyses.


Subject(s)
Dementia , Humans , Netherlands , Cohort Studies , Algorithms , Information Dissemination/methods , Biomedical Research
2.
medRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496672

ABSTRACT

The co-occurrence of insulin resistance (IR)-related metabolic conditions with neuropsychiatric disorders is a complex public health challenge. Evidence of the genetic links between these phenotypes is emerging, but little is currently known about the genomic regions and biological functions that are involved. To address this, we performed Local Analysis of [co]Variant Association (LAVA) using large-scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome) and nine neuropsychiatric disorders. Subsequently, positional and expression quantitative trait locus (eQTL)-based gene mapping and downstream functional genomic analyses were performed on the significant loci. Patterns of negative and positive local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified at 109 unique genomic regions across all phenotype pairs. Local correlations emerged even in the absence of global genetic correlations between IR-related conditions and Alzheimer's disease, bipolar disorder, and Tourette's syndrome. Genes mapped to the correlated regions showed enrichment in biological pathways integral to immune-inflammatory function, vesicle trafficking, insulin signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further prioritised 10 genetically correlated regions for likely harbouring shared causal variants, displaying high deleterious or regulatory potential. These variants were found within or in close proximity to genes, such as SLC39A8 and HLA-DRB1, that can be targeted by supplements and already known drugs, including omega-3/6 fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering drugs. Overall, our findings underscore the complex genetic landscape of IR-neuropsychiatric multimorbidity, advocating for an integrated disease model and offering novel insights for research and treatment strategies in this domain.

3.
Neurosci Biobehav Rev ; 159: 105604, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423195

ABSTRACT

Conflicting evidence exists on the relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) biomarkers. Therefore, we conducted a random-effects meta-analysis to evaluate the correlation of glucose metabolism measures (glycated hemoglobin, fasting blood glucose, insulin resistance indices) and DM status with AD biomarkers of amyloid-ß and tau measured by positron emission tomography or cerebrospinal fluid. We selected 37 studies from PubMed and Embase, including 11,694 individuals. More impaired glucose metabolism and DM status were associated with higher tau biomarkers (r=0.11[0.03-0.18], p=0.008; I2=68%), but were not associated with amyloid-ß biomarkers (r=-0.06[-0.13-0.01], p=0.08; I2=81%). Meta-regression revealed that glucose metabolism and DM were specifically associated with tau biomarkers in population settings (p=0.001). Furthermore, more impaired glucose metabolism and DM status were associated with lower amyloid-ß biomarkers in memory clinic settings (p=0.004), and in studies with a higher prevalence of dementia (p<0.001) or lower cognitive scores (p=0.04). These findings indicate that DM is associated with biomarkers of tau but not with amyloid-ß. This knowledge is valuable for improving dementia and DM diagnostics and treatment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diabetes Mellitus , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/metabolism , Glucose , Peptide Fragments , Positron-Emission Tomography/methods , tau Proteins
4.
J Magn Reson Imaging ; 59(2): 397-411, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37658640

ABSTRACT

Perivascular spaces (PVS) and blood-brain barrier (BBB) disruption are two key features of cerebral small vessel disease (cSVD) and neurodegenerative diseases that have been linked to cognitive impairment and are involved in the cerebral waste clearance system. Magnetic resonance imaging (MRI) offers the possibility to study these pathophysiological processes noninvasively in vivo. This educational review provides an overview of the MRI techniques used to assess PVS functionality and BBB disruption. MRI-visible PVS can be scored on structural images by either (subjectively) counting or (automatically) delineating the PVS. We highlight emerging (diffusion) techniques to measure proxies of perivascular fluid and its movement, which may provide a more comprehensive understanding of the role of PVS in diseases. For the measurement of BBB disruption, we explain the most commonly used MRI technique, dynamic contrast-enhanced (DCE) MRI, as well as a more recently developed technique based on arterial spin labeling (ASL). DCE MRI and ASL are thought to measure complementary characteristics of the BBB. Furthermore, we describe clinical studies that have utilized these MRI techniques in cSVD and neurodegenerative diseases, particularly Alzheimer's disease (AD). These studies demonstrate the role of PVS and BBB dysfunction in these diseases and provide insight into the large overlap, but also into the differences between cSVD and AD. Overall, MRI techniques may provide valuable insights into the pathophysiological mechanisms underlying these diseases and have the potential to be used as markers for disease progression and treatment response. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Vascular Diseases , Humans , Blood-Brain Barrier/pathology , Neurodegenerative Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Alzheimer Disease/diagnostic imaging , Vascular Diseases/pathology
5.
J Alzheimers Dis Rep ; 7(1): 1299-1311, 2023.
Article in English | MEDLINE | ID: mdl-38143773

ABSTRACT

Background: Alzheimer's disease pathology and vascular burden are highly prevalent and often co-occur in elderly. It remains unclear how both relate to cognitive decline. Objective: To investigate whether amyloid abnormality and vascular burden synergistically contribute to cognitive decline in a memory clinic population. Methods: We included 227 patients from Maastricht and Aachen memory clinics. Amyloid abnormality (A+) was defined by CSF Aß42 using data-driven cut-offs. Vascular burden (V+) was defined as having moderate to severe white matter hyperintensities, or any microbleeds, macrohemorrhage or infarcts on MRI. Longitudinal change in global cognition, memory, processing speed, executive functioning, and verbal fluency was analysed across the A-V-, A-V+, A+V-, A+V+ groups by linear mixed models. Additionally, individual MRI measures, vascular risk and vascular disease were used as V definitions. Results: At baseline, the A+V+ group scored worse on global cognition and verbal fluency compared to all other groups, and showed worse memory compared to A-V+ and A-V- groups. Over time (mean 2.7+ - 1.5 years), A+V+ and A+V- groups showed faster global cognition decline than A-V+ and A-V- groups. Only the A+V- group showed decline on memory and verbal fluency. The A-V+ group did not differ from the A-V- group. Individual MRI vascular measures only indicated an independent association of microbleeds with executive functioning decline. Findings were similar using other V definitions. Conclusions: Our study demonstrates that amyloid abnormality predicts cognitive decline independent from vascular burden in a memory clinic population. Vascular burden shows a minor contribution to cognitive decline in these patients. This has important prognostic implications.

6.
Alzheimers Dement ; 19(11): 5023-5035, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37095709

ABSTRACT

INTRODUCTION: We investigated the link between locus coeruleus (LC) pathology and cerebral microangiopathy in two large neuropathology datasets. METHODS: We included data from the National Alzheimer's Coordinating Center (NACC) database (n = 2197) and Religious Orders Study and Rush Memory and Aging Project (ROSMAP; n = 1637). Generalized estimating equations and logistic regression were used to examine associations between LC hypopigmentation and presence of cerebral amyloid angiopathy (CAA) or arteriolosclerosis, correcting for age at death, sex, cortical Alzheimer's disease (AD) pathology, ante mortem cognitive status, and presence of vascular and genetic risk factors. RESULTS: LC hypopigmentation was associated with higher odds of overall CAA in the NACC dataset, leptomeningeal CAA in the ROSMAP dataset, and arteriolosclerosis in both datasets. DISCUSSION: LC pathology is associated with cerebral microangiopathy, independent of cortical AD pathology. LC degeneration could potentially contribute to the pathways relating vascular pathology to AD. Future studies of the LC-norepinephrine system on cerebrovascular health are warranted. HIGHLIGHTS: We associated locus coeruleus (LC) pathology and cerebral microangiopathy in two large autopsy datasets. LC hypopigmentation was consistently related to arteriolosclerosis in both datasets. LC hypopigmentation was related to cerebral amyloid angiopathy (CAA) presence in the National Alzheimer's Coordinating Center dataset. LC hypopigmentation was related to leptomeningeal CAA in the Religious Orders Study and Rush Memory and Aging Project dataset. LC degeneration may play a role in the pathways relating vascular pathology to Alzheimer's disease.


Subject(s)
Alzheimer Disease , Arteriolosclerosis , Cerebral Amyloid Angiopathy , Cerebral Small Vessel Diseases , Hypopigmentation , Humans , Alzheimer Disease/pathology , Locus Coeruleus/pathology , Arteriolosclerosis/complications , Arteriolosclerosis/pathology , Cerebral Amyloid Angiopathy/pathology , Cerebral Small Vessel Diseases/complications , Autopsy , Hypopigmentation/complications
7.
Neurosci Biobehav Rev ; 143: 104927, 2022 12.
Article in English | MEDLINE | ID: mdl-36367493

ABSTRACT

Clinical and genomic studies have shown an overlap between neuropsychiatric disorders and insulin resistance (IR)-related somatic conditions, including obesity, type 2 diabetes, and cardiovascular diseases. Impaired cognition is often observed among neuropsychiatric disorders, where multiple cognitive domains may be affected. In this review, we aimed to summarise previous evidence on the relationship between IR-related diseases/traits and cognitive performance in the large UK Biobank study cohort. Electronic searches were conducted on PubMed, Scopus, and Web of Science until April 2022. Eighteen articles met the inclusion criteria and were qualitatively reviewed. Overall, there is substantial evidence for an association between IR-related cardio-metabolic diseases/traits and worse performance on various cognitive domains, which is largely independent of possible confoundings. The most consistent findings referred to IR-related associations with poorer verbal and numerical reasoning ability, as well as slower processing speed. The observed associations might be mediated by alterations in immune-inflammation, brain integrity/connectivity, and/or comorbid somatic or psychiatric diseases/traits. Our findings provide impetus for further research into the underlying neurobiology and possible new therapeutic targets.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Biological Specimen Banks , Cognition , United Kingdom/epidemiology
8.
BMC Psychiatry ; 22(1): 573, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028833

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is linked with several neurodegenerative and psychiatric disorders, either as a comorbid condition or as a risk factor. We aimed to expand the evidence by examining associations with a broad range of brain disorders (psychiatric and neurological disorders, excluding late-onset neurodegenerative disorders), while also accounting for the temporal order of T2DM and these brain disorders. METHODS: In a population-based cohort-study of 1,883,198 Danish citizens, born 1955-1984 and followed until end of 2016, we estimated associations between T2DM and 16 brain disorders first diagnosed between childhood and mid-adulthood. We calculated odds ratios (OR) and hazard ratios (HR) with 95% confidence intervals (CI) in temporally ordered analyses (brain disorder diagnosis after T2DM and vice versa), adjusted for sex, age, follow-up, birth year, and parental factors. RESULTS: A total of 67,660 (3.6%) of the study population were identified as T2DM cases after age 30 and by a mean age of 45 years (SD of 8 years). T2DM was associated with most psychiatric disorders. Strongest associations were seen with other (i.e. non-anorectic) eating disorders (OR [95% CI]: 2.64 [2.36-2.94]) and schizophrenia spectrum disorder (2.73 [2.63-2.84]). Among neurological disorders especially inflammatory brain diseases (1.73 [1.57-1.91]) and epilepsy (1.67 [1.60-1.75]) were associated with T2DM. Most associations remained in both directions in the temporally ordered analyses. For most psychiatric disorders, associations were strongest in females. CONCLUSIONS: T2DM was associated with several psychiatric and neurological disorders, and most associations were consistently found for both temporal order of disorders. This suggests a shared etiology of T2DM and those brain disorders. This study can form the starting point for studies directed at further elucidating potential causal links between disorders and shared biological mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Epilepsy , Adult , Child , Cohort Studies , Denmark , Female , Humans , Middle Aged , Proportional Hazards Models , Risk Factors
9.
Transl Psychiatry ; 12(1): 59, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165256

ABSTRACT

The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity, and type 2 diabetes mellitus (T2DM), is higher in Alzheimer's disease (AD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of insulin signalling has been implicated in these neuropsychiatric disorders, and shared genetic factors might partly underlie this observed multimorbidity. We investigated the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by estimating pairwise global genetic correlations using the summary statistics of the largest available genome-wide association studies for these phenotypes. Having tested these hypotheses, other potential brain "insulinopathies" were also explored by estimating the genetic relationship of six additional neuropsychiatric disorders with nine insulin-related diseases/traits. Stratified covariance analyses were then performed to investigate the contribution of insulin-related gene sets. Significant negative genetic correlations were found between OCD and MetS (rg = -0.315, p = 3.9 × 10-8), OCD and obesity (rg = -0.379, p = 3.4 × 10-5), and OCD and T2DM (rg = -0.172, p = 3 × 10-4). Significant genetic correlations with insulin-related phenotypes were also found for anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD), major depressive disorder, and schizophrenia (p < 6.17 × 10-4). Stratified analyses showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar disorder, schizophrenia and somatic insulinopathies through gene sets related to insulin signalling and insulin receptor recycling, and positive genetic covariances between AN and T2DM, as well as ADHD and MetS through gene sets related to insulin processing/secretion (p < 2.06 × 10-4). Overall, our findings suggest the existence of two clusters of neuropsychiatric disorders, in which the genetics of insulin-related diseases/traits may exert divergent pleiotropic effects. These results represent a starting point for a new research line on "insulinopathies" of the brain.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Depressive Disorder, Major , Diabetes Mellitus, Type 2 , Attention Deficit Disorder with Hyperactivity/psychology , Autism Spectrum Disorder/psychology , Brain , Depressive Disorder, Major/genetics , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Humans , Insulin
10.
JAMA Neurol ; 79(3): 228-243, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35099509

ABSTRACT

IMPORTANCE: One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. OBJECTIVE: To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. EXPOSURES: Alzheimer disease biomarkers detected on PET or in CSF. MAIN OUTCOMES AND MEASURES: Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. RESULTS: Among the 19 097 participants (mean [SD] age, 69.1 [9.8] years; 10 148 women [53.1%]) included, 10 139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P = .04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P = .004), subjective cognitive decline (9%; 95% CI, 3%-15%; P = .005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P = .004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P = .18). CONCLUSIONS AND RELEVANCE: This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Amyloid beta-Peptides/cerebrospinal fluid , Amyloidogenic Proteins , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Positron-Emission Tomography , Prevalence , tau Proteins/cerebrospinal fluid
11.
Alzheimers Dement ; 18(10): 1832-1845, 2022 10.
Article in English | MEDLINE | ID: mdl-34877782

ABSTRACT

INTRODUCTION: The evidence for characteristics of persons with subjective cognitive decline (SCD) associated with amyloid positivity is limited. METHODS: In 1640 persons with SCD from 20 Amyloid Biomarker Study cohort, we investigated the associations of SCD-specific characteristics (informant confirmation, domain-specific complaints, concerns, feelings of worse performance) demographics, setting, apolipoprotein E gene (APOE) ε4 carriership, and neuropsychiatric symptoms with amyloid positivity. RESULTS: Between cohorts, amyloid positivity in 70-year-olds varied from 10% to 76%. Only older age, clinical setting, and APOE ε4 carriership showed univariate associations with increased amyloid positivity. After adjusting for these, lower education was also associated with increased amyloid positivity. Only within a research setting, informant-confirmed complaints, memory complaints, attention/concentration complaints, and no depressive symptoms were associated with increased amyloid positivity. Feelings of worse performance were associated with less amyloid positivity at younger ages and more at older ages. DISCUSSION: Next to age, setting, and APOE ε4 carriership, SCD-specific characteristics may facilitate the identification of amyloid-positive individuals.


Subject(s)
Amyloidosis , Cognitive Dysfunction , Humans , Amyloid , Amyloidogenic Proteins , Apolipoprotein E4/genetics , Biomarkers , Brain/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/psychology , Positron-Emission Tomography
13.
Neurobiol Aging ; 102: 17-22, 2021 06.
Article in English | MEDLINE | ID: mdl-33667876

ABSTRACT

Advanced Alzheimer's disease (AD) is characterized by higher noradrenaline metabolite levels that may be associated with AD pathology. The locus coeruleus (LC) is the main site for cerebral noradrenaline synthesis and LC volume loss occurs as early as Braak stage 1. This study investigates the association between noradrenergic turnover and brain morphology, and the modifying effect of AD pathology. The study sample included 77 memory clinic patients (37 cognitively unimpaired and 40 cognitively impaired (mild cognitive impairment or AD dementia)). Cortical thickness and volumetric analyses were performed using FreeSurfer. Cerebrospinal fluid was analyzed for noradrenergic metabolite 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), Aß42 and phosphorylated tau. Higher MHPG was associated with lower cortical thickness and hippocampal volume at lower, but subthreshold, levels of Aß42 and at higher p-tau levels. These associations remained significant after adding APOE-E4 or cognitive status as covariates. Our results suggest that greater MHPG together with worse AD pathology contributes to neurodegeneration, possibly before significant amyloidosis. The noradrenergic system may play an important role in early detection of AD-related processes.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cerebral Cortex/pathology , Locus Coeruleus/metabolism , Locus Coeruleus/pathology , Norepinephrine/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/etiology , Alzheimer Disease/psychology , Amyloid beta-Peptides/cerebrospinal fluid , Cognition , Female , Humans , Male , Methoxyhydroxyphenylglycol/cerebrospinal fluid , Middle Aged , Nerve Degeneration , Organ Size , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
14.
Front Aging Neurosci ; 10: 193, 2018.
Article in English | MEDLINE | ID: mdl-29988624

ABSTRACT

We investigated whether amyloid-ß (Aß) and tau affected cognition in cognitively normal (CN) individuals, and whether norms for neuropsychological tests based on biomarker-negative individuals would improve early detection of dementia. We included 907 CN individuals from 8 European cohorts and from the Alzheimer's disease Neuroimaging Initiative. All individuals were aged above 40, had Aß status and neuropsychological data available. Linear mixed models were used to assess the associations of Aß and tau with five neuropsychological tests assessing memory (immediate and delayed recall of Auditory Verbal Learning Test, AVLT), verbal fluency (Verbal Fluency Test, VFT), attention and executive functioning (Trail Making Test, TMT, part A and B). All test except the VFT were associated with Aß status and this influence was augmented by age. We found no influence of tau on any of the cognitive tests. For the AVLT Immediate and Delayed recall and the TMT part A and B, we calculated norms in individuals without Aß pathology (Aß- norms), which we validated in an independent memory-clinic cohort by comparing their predictive accuracy to published norms. For memory tests, the Aß- norms rightfully identified an additional group of individuals at risk of dementia. For non-memory test we found no difference. We confirmed the relationship between Aß and cognition in cognitively normal individuals. The Aß- norms for memory tests in combination with published norms improve prognostic accuracy of dementia.

15.
Alzheimers Dement ; 14(7): 913-924, 2018 07.
Article in English | MEDLINE | ID: mdl-29601787

ABSTRACT

INTRODUCTION: Apolipoprotein E (APOE) ε4 is the major genetic risk factor for Alzheimer's disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid ß (Aß) pathology. METHODS: We included 3451 Aß+ subjects (853 AD-type dementia, 1810 mild cognitive impairment, and 788 cognitively normal). Generalized estimating equation models were used to assess APOE ε4 prevalence in relation to age, sex, education, and geographical location. RESULTS: The APOE ε4 prevalence was 66% in AD-type dementia, 64% in mild cognitive impairment, and 51% in cognitively normal, and it decreased with advancing age in Aß+ cognitively normal and Aß+ mild cognitive impairment (P < .05) but not in Aß+ AD dementia (P = .66). The prevalence was highest in Northern Europe but did not vary by sex or education. DISCUSSION: The APOE ε4 prevalence in AD was higher than that in previous studies, which did not require presence of Aß pathology. Furthermore, our results highlight disease heterogeneity related to age and geographical location.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Cognitive Dysfunction/metabolism , Aged , Alleles , Biomarkers/cerebrospinal fluid , Europe , Female , Humans , Male , Positron-Emission Tomography , Prevalence
16.
Article in English | MEDLINE | ID: mdl-28332920

ABSTRACT

We compared trajectories of terminal cognitive decline in older Black (n = 3372) and White (n = 1756) persons from a defined population who completed tests of episodic memory and perceptual speed at 3-year intervals for up to 18 years. During a mean of 9.9 years of observation, 1608 Black persons and 902 White persons died. Preterminal decline of episodic memory did not differ by race. Terminal episodic memory decline began earlier in Black persons (mean of 4.3 years before death) than in White persons (mean = 3.9 years) and progressed more slowly. By contrast, terminal decline of perceptual speed began earlier in White persons (mean = 5.0 years) than in Black persons (mean = 4.5 years). Rate of perceptual speed decline was more rapid in White persons than in Black persons in both the preterminal and terminal periods. The results indicate that terminal cognitive decline occurs in Black persons but suggest that the rate of cognitive decline during the terminal period is less rapid in Black persons than in White persons.


Subject(s)
Cognitive Dysfunction/ethnology , Memory, Episodic , Black or African American , Aged , Chicago , Cognitive Aging , Disease Progression , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Time Factors , White People
17.
Clin Nutr ; 37(1): 321-328, 2018 02.
Article in English | MEDLINE | ID: mdl-28153503

ABSTRACT

BACKGROUND & AIMS: Multiple sclerosis (MS) has physiological and/or immunological characteristics that diminish serotonin metabolism, a neurotransmitter associated with affective and cognitive functions. The aim was examine the acute and dose-dependent effects of a dietary tryptophan (TRP) enrichment on affective and cognitive functions in MS patients. We hypothesized that increased dietary availability of the amino acid TRP enhances serotonin concentrations and improves neuropsychological functions. METHODS: In a double-blind, placebo-controlled, crossover study, MS patients with (n = 15) and without (n = 17) depressed mood ingested a whey protein mixture with 4 different amounts of TRP. Mood states, total plasma TRP and plasma TRP/ΣLNAA ratio were measured during each test session and cognitive tasks were conducted three hours after dietary intake. RESULTS: A fast, transient and dose-dependent increase of total plasma TRP and TRP/ΣLNAA ratio was found. Ratings of negative mood decreased over time, independent of the TRP dose. Relative to whey-only, immediate word recall and delayed recognition improved after ingestion of the lowest added TRP dose and was mainly due to better recollection for positive loaded words. Executive functions were not affected by a difference in TRP availability. CONCLUSIONS: A moderate addition of TRP to whey protein enhances memory processes without improving the mood state in MS. ccmo-registration number is NL32316.096.10.


Subject(s)
Mental Recall/drug effects , Multiple Sclerosis/diet therapy , Tryptophan/pharmacology , Whey Proteins/pharmacology , Adult , Affect/drug effects , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Multiple Sclerosis/physiopathology , Psychological Tests , Recognition, Psychology/drug effects , Tryptophan/administration & dosage , Tryptophan/blood , Tryptophan/therapeutic use , Whey Proteins/administration & dosage , Whey Proteins/therapeutic use
18.
World J Biol Psychiatry ; 19(4): 244-328, 2018 06.
Article in English | MEDLINE | ID: mdl-29076399

ABSTRACT

In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-ß positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.


Subject(s)
Biological Psychiatry/standards , Biomarkers , Consensus , Dementia/diagnosis , Neurodegenerative Diseases/diagnosis , Societies, Medical/standards , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Dementia/blood , Dementia/cerebrospinal fluid , Humans , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/cerebrospinal fluid
19.
Neurobiol Aging ; 61: 138-145, 2018 01.
Article in English | MEDLINE | ID: mdl-29078129

ABSTRACT

The association of dementia-related pathologies with cognition is hypothesized to decrease as age advances. We examined this in 413 persons without cognitive impairment at baseline who completed annual cognitive evaluations during a mean of 10.4 years. After death, neuropathologic examinations quantified beta amyloid plaque load, neurofibrillary tangles, and transactive response DNA-binding protein 43 pathology, and identified Lewy bodies, hippocampal sclerosis, and gross and microscopic cerebral infarcts. We tested whether age at death modified associations of these neuropathologies with the nonlinear trajectory of cognitive decline using mixed-effects change point models. The rate of global cognitive decline was gradual at first and then increased approximately 10-fold in the last 3 years of life. After adjustment for all other pathologic indices, tangle density, gross infarcts, Lewy bodies, and transactive response DNA-binding protein 43 were associated with global cognitive decline. However, the deleterious association of dementia-related pathologies with cognitive decline did not systematically vary by age. This suggests that the neuropathologic mechanisms underlying late-life cognitive decline do not substantially differ across the spectrum of age.


Subject(s)
Aging/pathology , Aging/psychology , Cognition , Dementia/pathology , Dementia/psychology , Aged , Aged, 80 and over , Aging/metabolism , Amyloid beta-Peptides/metabolism , DNA-Binding Proteins/metabolism , Dementia/metabolism , Female , Humans , Lewy Bodies/pathology , Male , Neurofibrillary Tangles/pathology
20.
JAMA Psychiatry ; 75(1): 84-95, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29188296

ABSTRACT

Importance: Cerebral amyloid-ß aggregation is an early event in Alzheimer disease (AD). Understanding the association between amyloid aggregation and cognitive manifestation in persons without dementia is important for a better understanding of the course of AD and for the design of prevention trials. Objective: To investigate whether amyloid-ß aggregation is associated with cognitive functioning in persons without dementia. Design, Setting, and Participants: This cross-sectional study included 2908 participants with normal cognition and 4133 with mild cognitive impairment (MCI) from 53 studies in the multicenter Amyloid Biomarker Study. Normal cognition was defined as having no cognitive concerns for which medical help was sought and scores within the normal range on cognitive tests. Mild cognitive impairment was diagnosed according to published criteria. Study inclusion began in 2013 and is ongoing. Data analysis was performed in January 2017. Main Outcomes and Measures: Global cognitive performance as assessed by the Mini-Mental State Examination (MMSE) and episodic memory performance as assessed by a verbal word learning test. Amyloid aggregation was measured with positron emission tomography or cerebrospinal fluid biomarkers and dichotomized as negative (normal) or positive (abnormal) according to study-specific cutoffs. Generalized estimating equations were used to examine the association between amyloid aggregation and low cognitive scores (MMSE score ≤27 or memory z score≤-1.28) and to assess whether this association was moderated by age, sex, educational level, or apolipoprotein E genotype. Results: Among 2908 persons with normal cognition (mean [SD] age, 67.4 [12.8] years), amyloid positivity was associated with low memory scores after age 70 years (mean difference in amyloid positive vs negative, 4% [95% CI, 0%-7%] at 72 years and 21% [95% CI, 10%-33%] at 90 years) but was not associated with low MMSE scores (mean difference, 3% [95% CI, -1% to 6%], P = .16). Among 4133 patients with MCI (mean [SD] age, 70.2 [8.5] years), amyloid positivity was associated with low memory (mean difference, 16% [95% CI, 12%-20%], P < .001) and low MMSE (mean difference, 14% [95% CI, 12%-17%], P < .001) scores, and this association decreased with age. Low cognitive scores had limited utility for screening of amyloid positivity in persons with normal cognition and those with MCI. In persons with normal cognition, the age-related increase in low memory score paralleled the age-related increase in amyloid positivity with an intervening period of 10 to 15 years. Conclusions and Relevance: Although low memory scores are an early marker of amyloid positivity, their value as a screening measure for early AD among persons without dementia is limited.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/cerebrospinal fluid , Brain/physiopathology , Cognition Disorders/physiopathology , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Cognition Disorders/diagnosis , Cognition Disorders/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Female , Humans , Male , Memory, Episodic , Mental Status and Dementia Tests , Middle Aged , Positron-Emission Tomography , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...