Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39037298

ABSTRACT

A quantitative theoretical framework has been created to model neutral beam injection and fast ion losses in the Wendelstein 7-X (W7-X) stellarator, including a novel method to develop synthetic diagnostics for fast ion loss detectors (FILDs) of many types, such as scintillating and Faraday Cup FILDs. This is the first time that this has been done in stellarator geometry with this level of fidelity, providing a way for fast ion losses to be predicted more precisely in future stellarator experiments and in W7-X. Simulations of the signal seen by a Faraday Cup FILD have been completed for multiple W7-X plasmas and show close agreement with the measured signals. This method is now applied to an actively water-cooled, scintillator-based FILD, which is currently in development to measure the fast ion loss distribution in W7-X in greater detail. The design makes use of a double slit to measure energy-and-pitch-angle-resolved losses of both co-going and counter-going fast ions. The diagnostic, which can be inserted to different radial positions, has been designed to withstand steady-state heat fluxes of up to 120 kW/m2 along with additional transient heat loads of 100 kW/m2 lasting for up to 20 s at a time. Simulations of W7-X standard magnetic configuration show up to 8 × 1013 (s-1 cm-2) ion fluxes onto the sensor from each neutral beam source and no signal from the counter-going slit. These simulations will help inform experimental proposals for future W7-X campaigns after installation of this diagnostic.

3.
Rev Sci Instrum ; 91(8): 083503, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872937

ABSTRACT

Coated glass targets are a key component of the Wendelstein 7-X laser blow-off system that is used for impurity transport studies. The preparation and analysis of these glass targets as well as their performance is examined in this paper. The glass targets have a high laser damage threshold and are coated via physical vapor deposition with µm thick films. In addition, nm-thin layers of Ti are used as an interface layer for improved ablation efficiency and reduced coating stress. Hence, the metallic or ceramic coating has a lateral homogeneity within 2% and contaminants less than 5%, being optimal for laser ablation processing. With this method, a short (few ms) and well defined pulse of impurities with about 1017 particles can be injected close to the last closed flux surface of Wendelstein 7-X. In particular, a significant amount of atoms with a velocity of about 1 km/s enters the plasma within 1 ms. The atoms are followed by a negligible concentration of slower clusters and macro-particles. This qualifies the use of the targets and applied laser settings for impurity transport studies with the laser blow-off system in Wendelstein 7-X.

SELECTION OF CITATIONS
SEARCH DETAIL
...