Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 20(1): 105, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024474

ABSTRACT

BACKGROUND: Urogenital tuberculosis (TB) is rare in children and usually develops due to reactivation of the foci in the genitourinary tract after the latency period following initial infection. Urogenital TB in children has no pathognomonic clinical features that can result in overlooking or misdiagnosing this clinical entity. Here, we report important findings regarding the pathogenesis and transmission of TB by using genotyping and whole-genome sequencing (WGS) in a study of renal TB case in a child. CASE PRESENTATION: A 13-year-old boy was admitted to the hospital because of high fever, severe dry cough, flank pain and painful urination. Abdominal ultrasonography and CT revealed an 8 mm calculus in the kidney, and clinical findings were initially interpreted as nephrolithiasis. Nevertheless, due to the atypical clinical presentation of kidney stone disease, additional investigations for possible TB were performed. The QuantiFERON®-TB Gold Plus test was positive, and the Mantoux test resulted in 15 mm of induration, confirming infection with Mycobacterium tuberculosis (Mtb). Chest X-ray was normal. Chest CT revealed calcified intrathoracic lymph nodes. The urine sample tested positive for acid-fast bacilli, and Mtb cultures were obtained from urine and bronchial aspirate samples, resulting in a final diagnosis of intrathoracic lymph node and renal TB. Contact investigation revealed that the child's father was diagnosed with TB when the child was 1 year old. Genotyping and WGS analysis of Mtb isolates of the child and his father confirmed the epidemiological link and pointed to the latency of infection in the child. CONCLUSIONS: This case report confirmed the development of active TB from calcified lesions in adolescent after 12 years of exposure, demonstrated the absence of microevolutionary changes in the Mtb genome during the period of latency, and proved the importance of appropriate evaluation and management to prevent the progression of TB infection to active TB disease. The use of WGS provided the ultimate resolution for the detection of TB transmission and reactivation events.


Subject(s)
Latent Tuberculosis/diagnosis , Mycobacterium tuberculosis/isolation & purification , Nephrolithiasis/diagnosis , Nephrolithiasis/microbiology , Tuberculosis, Renal/diagnosis , Whole Genome Sequencing , Adolescent , Antibiotics, Antitubercular/therapeutic use , Fathers , Genotype , Humans , Infectious Disease Transmission, Vertical , Male , Treatment Outcome , Tuberculin Test , Tuberculosis, Lymph Node/diagnosis , Tuberculosis, Lymph Node/drug therapy , Tuberculosis, Renal/drug therapy
2.
Infect Genet Evol ; 78: 104126, 2020 03.
Article in English | MEDLINE | ID: mdl-31783188

ABSTRACT

Although the number of new tuberculosis (TB) cases registered per year has decreased by 3-fold between 2001 and 2017 in Latvia, the TB incidence and rates of multidrug resistant TB in this Baltic country remain substantially higher than in most other European countries. Molecular typing methods of Mycobacterium tuberculosis (MTB) play an important role both in clinical studies of the disease and the epidemiological investigations, allowing to describe and characterize the pathogen's population structure and spread of particular genotypes. Aim of this study was to examine the prevalence of MTB lineages in Riga and Riga region of Latvia within a five-year period (2008-2012), and to evaluate the discriminatory power (DP) of spoligotyping, standard 24-locus MIRU-VNTR and IS6110-RFLP methods in this setting. The results showed that the main MTB spoligotype families were Beijing (25.3%) and LAM (24.3%), followed by T (22.1%), Ural (11.2%), Haarlem (6.6%) and X superfamily (3.4%). This distribution remained stable over the five consecutive years. 67.6% of MTB isolates were pan-susceptible, and 32.4% were resistant to any drug; multi-drug resistance was found in 5.8% of MTB strains, and 7.6% of MTB isolates were extensively drug-resistant. Drug resistance was associated with SIT1, SIT283 and SIT42 genotypes, while SIT1 and SIT42 were overrepresented among multi drug-resistant MTB strains. Overall, DP of spoligotyping method alone was 0.8953, while DP of both 24-locus MIRU-VNTR analysis and IS6110 RFLP was higher (DP = 0.9846 and 0.9927, respectively), mainly due to the improvement of the resolution for the Beijing strains. In conclusion, this work represents the first comprehensive molecular epidemiological description of TB in Latvia, highlighting the high genetic diversity of MTB strains circulating in Riga and Riga region. In combination with detailed epidemiological data this approach was helpful for the in-depth understanding of epidemiological processes in settings where the Next-Gen sequencing is not available as a routine method.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis/epidemiology , Tuberculosis/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Antitubercular Agents/pharmacology , Child , Child, Preschool , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Female , Genetic Variation , Genotyping Techniques , Humans , Infant , Infant, Newborn , Latvia/epidemiology , Male , Microbial Sensitivity Tests , Middle Aged , Minisatellite Repeats , Molecular Epidemiology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Polymorphism, Restriction Fragment Length , Prevalence , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult
3.
Infect Genet Evol ; 43: 15-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27178993

ABSTRACT

Diseases which are caused by non-tuberculous mycobacteria (NTM) are an increasing problem in the developed countries. In Latvia, one of the most clinically important members of NTM is Mycobacterium avium (M. avium), an opportunistic pathogen which has been isolated from several lung disease patients and tissue samples of slaughter pigs. This study was designed to characterize the genetic diversity of the M. avium isolates in Latvia and to compare the distribution of genotypic patterns among humans and pigs. Eleven (Hall and Salipante, 2010) clinical M. avium samples, isolated from patients of Center of Tuberculosis and Lung Diseases (years 2003-2010), and 32 isolates from pig necrotic mesenterial lymph nodes in different regions (years 2003-2007) were analyzed. The majority (42 of 43) of samples were identified as M. avium subsp. hominissuis; one porcine isolate belonged to M. avium subsp. avium. MIRU-VNTR genotyping revealed 13 distinct genotypes, among which nine genotype patterns, including M. avium subsp. avium isolate, were newly identified. IS1245 RFLP fingerprinting of 25 M. avium subsp. hominissuis samples yielded 17 different IS1245 RFLP patterns, allowing an efficient discrimination of isolates. Clusters of identical RFLP profiles were observed within host species, geographical locations and time frame of several years. Additional in silico analysis on simulated MIRU-VNTR genotype population datasets showed that the MIRU-VNTR pattern similarity could partly arise due to probabilistic increase of acquiring homoplasy among subpopulations, thus the similar MIRU-VNTR profiles of M. avium strains even in close geographical proximity should be interpreted with caution.


Subject(s)
DNA, Bacterial/genetics , Minisatellite Repeats , Mycobacterium avium/classification , Tuberculosis/microbiology , Animals , Computer Simulation , Genetic Variation , Genotype , Humans , Latvia , Mycobacterium avium/genetics , Mycobacterium avium/isolation & purification , Phylogeny , Swine , Swine Diseases/microbiology , Tuberculosis/veterinary
4.
J Infect Chemother ; 22(7): 472-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27236516

ABSTRACT

Pharmacogenomic testing of tuberculosis drug-metabolizing enzyme genes was proposed as a strategy to identify patients at risk for suboptimal responses to medications. However, variations of the genotype frequencies among ethnic groups exist and new alleles are been identified. The aim of this study was to identify polymorphisms of genes encoding metabolic enzymes NAT2 and GSTM1 in tuberculosis patients in Latvia and to estimate the frequency of NAT2 slow acetylator and GSTM1 null genotypes. In total, 85 DNA samples were genotyped, all individuals were Caucasian. An ethnic heterogeneity reflecting the multiethnic population of the country was observed. 49 patients were Latvians, 30 were Russians and 6 of other ethnicity. In total, 7 NAT2 alleles were identified: *4, *5, *6, *7, *11, *12, * and *13. The most frequent was the slow acetylation allele NAT2*6 (frequency 0.388) followed by the slow acetylation allele NAT2*5 and the rapid acetylation allele NAT2*4 (frequencies 0.306 and 0.194, respectively). The predominance of slow (51.8%) and intermediate (43.5%) acetylators compared with rapid acetylators (4.7%) was observed. The GSTM1 null genotype was detected in 48.2% of tuberculosis patients. When subgroup analysis was performed according to ethnicity, the results showed that neither NAT2 allele frequencies nor GSTM1 null genotype frequency did not differ significantly in TB patients of Latvian or Russian ethnicity. Overall, genotyping results were similar with previous reports of a NAT2 gene variation and GSTM1 null genotype frequency in Caucasians. Our findings have a contribution for the pharmacogenetics-based tuberculosis therapy in Latvia in future.


Subject(s)
Antitubercular Agents/metabolism , Arylamine N-Acetyltransferase/genetics , Glutathione Transferase/genetics , Isoniazid/metabolism , Tuberculosis/enzymology , Adult , Aged , Arylamine N-Acetyltransferase/metabolism , Female , Gene Frequency , Genotype , Glutathione Transferase/metabolism , Humans , Latvia , Male , Middle Aged , Polymorphism, Genetic , Tuberculosis/genetics , Tuberculosis/metabolism , Young Adult
5.
Mol Phylogenet Evol ; 99: 133-143, 2016 06.
Article in English | MEDLINE | ID: mdl-27001605

ABSTRACT

Currently, Mycobacterium tuberculosis isolates of Latin-American Mediterranean (LAM) family may be detected far beyond the geographic areas that coined its name 15years ago. Here, we established the framework phylogeny of this geographically intriguing and pathobiologically important mycobacterial lineage and hypothesized how human demographics and migration influenced its phylogeography. Phylogenetic analysis of LAM isolates from all continents based on 24 variable number of tandem repeats (VNTR) loci and other markers identified three global sublineages with certain geographic affinities and defined by large deletions RD115, RD174, and by spoligotype SIT33. One minor sublineage (spoligotype SIT388) appears endemic in Japan. One-locus VNTR signatures were established for sublineages and served for their search in published literature and geographic mapping. We suggest that the LAM family originated in the Western Mediterranean region. The most widespread RD115 sublineage seems the most ancient and encompasses genetically and geographically distant branches, including extremely drug resistant KZN in South Africa and LAM-RUS recently widespread across Northern Eurasia. The RD174 sublineage likely started its active spread in Brazil; its earlier branch is relatively dominated by isolates from South America and the derived one is dominated by Portuguese and South/Southeastern African isolates. The relatively most recent SIT33-sublineage is marked with enigmatic gaps and peaks across the Americas and includes South African clade F11/RD761, which likely emerged within the SIT33 subpopulation after its arrival to Africa. In addition to SIT388-sublineage, other deeply rooted, endemic LAM sublineages may exist that remain to be discovered. As a general conclusion, human mass migration appears to be the major factor that shaped the M. tuberculosis phylogeography over large time-spans.


Subject(s)
Mycobacterium tuberculosis/classification , Drug Resistance, Bacterial , Genetic Linkage , Genetic Loci , Genotype , Humans , Mediterranean Region , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Phylogeny , Phylogeography , South America
6.
Diagn Microbiol Infect Dis ; 81(3): 177-82, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25557624

ABSTRACT

Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages.


Subject(s)
Aminoglycosides/pharmacology , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Mycobacterium tuberculosis/drug effects , Tuberculosis/microbiology , Amino Acid Substitution , Genes, Bacterial , Genotype , Humans , Latvia , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Phenotype , Point Mutation
7.
Res Microbiol ; 155(10): 830-4, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15567277

ABSTRACT

In order to characterise molecular mechanisms of first-line drug resistance in Mycobacterium tuberculosis and to evaluate the use of molecular markers of resistance (gene point mutations), we analysed 66 multi-drug-resistant (MDR) isolates from Latvian tuberculosis patients. They were all resistant to rifampin (RIF), isoniazid (INH) and streptomycin (SM), and 33 were resistant to ethambutol (EMB). Enzymatic digestion by MboII and nucleotide sequencing of the rpsL gene fragment detected a single nucleotide substitution K43R in 40 (61%) of the 66 SM-resistant M. tuberculosis isolates. Of the other 26 SM-resistant isolates, 16 (24%) had mutations at positions 513A-->C and 516C-->T of the rrs gene and 10 (15%) had the wild-type sequence. The single-stranded DNA conformation polymorphism (SSCP) method was used to detect mutations in the embB gene associated with EMB resistance. Substitutions in the embB gene were found by SSCP analysis in 15 (45%) and by sequencing in 17 (52%) of the 33 EMB-resistant isolates. Surprisingly, SSCP revealed a nucleotide mutation at codon M306 in five (15%) of 33 in vitro EMB-susceptible MDR isolates.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Ethambutol/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Streptomycin/pharmacology , Tuberculosis/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Humans , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Sequence Analysis, DNA , Tuberculosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...