Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 918: 170690, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325478

ABSTRACT

Worldwide, anthropogenic activities threaten surface water quality by aggravating eutrophication and increasing total nitrogen to total phosphorus (TN:TP) ratios. In hydrologically connected systems, water quality management may benefit from in-ecosystem nutrient retention by preventing nutrient transport to downstream systems. However, nutrient retention may also alter TN:TP ratios with unforeseen consequences for downstream water quality. Here, we aim to increase understanding of how nutrient retention may influence nutrient transport to downstream systems to improve long-term water quality management. We analyzed lake ecosystem state, in-lake nutrient retention, and nutrient transport (ratios) for 3482 Chinese lakes using the lake process-based ecosystem model PCLake+. We compared a low climate change and sustainability-, and a high climate change and economy-focused scenario for 2050 against 2012. In both scenarios, the effect of nutrient input reduction outweighs that of temperature rise, resulting in more lakes with good ecological water quality (i.e., macrophyte-dominated) than in 2012. Generally, the sustainability-focused scenario shows a more promising future for water quality than the economy-focused scenario. Nevertheless, most lakes remain phytoplankton-dominated. The shift to more macrophyte-dominated lakes in 2050 is accompanied by higher nutrient retention fractions and less nutrient transport to downstream waterbodies. In-lake nutrient retention also alters the water's TN:TP ratio, depending on the inflow TN:TP ratio and the ecosystem state. In 2050 higher TN:TP ratios are expected in the outflows of lakes than in 2012, especially for the sustainability-focused scenario with strong TP loading reduction. However, the downstream impact of increased TN:TP ratios depends on actual nutrient loadings and the limiting nutrient in the receiving system. We conclude that nutrient input reductions, improved water quality, higher in-lake nutrient retention fractions, and lower nutrient transport to downstream waterbodies go hand in hand. Therefore, water quality management could benefit even more from nutrient pollution reduction than one would expect at first sight.

2.
Water Res ; 242: 119950, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37348422

ABSTRACT

Worldwide, water quality managers target a clear, macrophyte-dominated state over a turbid, phytoplankton-dominated state in shallow lakes. The competition mechanisms underlying these ecological states were explored in the 1990s, but the concept of critical turbidity seems neglected in contemporary water quality models. In particular, a simple mechanistic model of alternative stable states in shallow lakes accounting for resource competition mechanisms and critical turbidity is lacking. To this end, we combined Scheffer's theory on critical turbidity with insights from nutrient and light competition theory founded by Tilman, Huisman and Weissing. This resulted in a novel graphical and mathematical model, GPLake-M, that is relatively simple and mechanistically understandable and yet captures the essential mechanisms leading to alternative stable states in shallow lakes. The process-based PCLake model was used to parameterize the model parameters and to test GPLake-M using a pattern-oriented strategy. GPLake-M's application range and position in the model spectrum are discussed. We believe that our results support the fundamental understanding of regime shifts in shallow lakes and provide a starting point for further mechanistic and management-focused explorations and model development. Furthermore, the concept of critical turbidity and the relation between light-limited submerged macrophytes and nutrient-limited phytoplankton might provide a new focus for empirical aquatic ecological research and water quality monitoring programs.


Subject(s)
Ecosystem , Lakes , Phytoplankton , Models, Theoretical , Water Quality , Eutrophication , Phosphorus/analysis
3.
Environ Sci Technol ; 57(9): 4003-4013, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802563

ABSTRACT

Phosphorus (P) precipitation is among the most effective treatments to mitigate lake eutrophication. However, after a period of high effectiveness, studies have shown possible re-eutrophication and the return of harmful algal blooms. While such abrupt ecological changes were attributed to the internal P loading, the role of lake warming and its potential synergistic effects with internal loading, thus far, has been understudied. Here, in a eutrophic lake in central Germany, we quantified the driving mechanisms of the abrupt re-eutrophication and cyanobacterial blooms in 2016 (30 years after the first P precipitation). A process-based lake ecosystem model (GOTM-WET) was established using a high-frequency monitoring data set covering contrasting trophic states. Model analyses suggested that the internal P release accounted for 68% of the cyanobacterial biomass proliferation, while lake warming contributed to 32%, including direct effects via promoting growth (18%) and synergistic effects via intensifying internal P loading (14%). The model further showed that the synergy was attributed to prolonged lake hypolimnion warming and oxygen depletion. Our study unravels the substantial role of lake warming in promoting cyanobacterial blooms in re-eutrophicated lakes. The warming effects on cyanobacteria via promoting internal loading need more attention in lake management, particularly for urban lakes.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Ecosystem , Eutrophication , Nutrients , Harmful Algal Bloom , Phosphorus/analysis , China
4.
J Environ Manage ; 326(Pt B): 116712, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36402022

ABSTRACT

Controlling non-point source pollution is often difficult and costly. Therefore, focusing on areas that contribute the most, so-called critical source areas (CSAs), can have economic and ecological benefits. CSAs are often determined using a modelling approach, yet it has proved difficult to calibrate the models in regions with limited data availability. Since identifying CSAs is based on the relative contributions of sub-basins to the total load, it has been suggested that uncalibrated models could be used to identify CSAs to overcome data scarcity issues. Here, we use the SWAT model to study the extent to which an uncalibrated model can be applied to determine CSAs. We classify and rank sub-basins to identify CSAs for sediment, total nitrogen (TN), and total phosphorus (TP) in the Fengyu River Watershed (China) with and without model calibration. The results show high similarity (81%-93%) between the identified sediment and TP CSA number and locations before and after calibration both on the yearly and seasonal scale. For TN alone, the results show moderate similarity on the yearly scale (73%). This may be because, in our study area, TN is determined more by groundwater flow after calibration than by surface water flow. We conclude that CSA identification with the uncalibrated model for TP is always good because its CSA number and locations changed least, and for sediment, it is generally satisfactory. The use of the uncalibrated model for TN is acceptable, as its CSA locations did not change after calibration; however, the TN CSA number changed by over 60% compared to the figures before calibration on both yearly and seasonal scales. Therefore, we advise using an uncalibrated model to identify CSAs for TN only if water yield composition changes are expected to be limited. This study shows that CSAs can be identified based on relative loading estimates with uncalibrated models in data-deficient regions.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers , Phosphorus/analysis , Nitrogen/analysis , China , Nutrients , Water , Environmental Monitoring
5.
Water Res ; 227: 119347, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36399843

ABSTRACT

Global anthropogenic flows of nitrogen (N) and phosphorus (P) have exceeded planetary boundaries with significant implications for pollution of the freshwater resources in the world. Understanding the global patterns and drivers of N and P concentrations and their ratios in the lakes could help design more effective management and remediation strategies to mitigate the impacts of eutrophication. While a suite of drivers are associated with the sources of nutrients, their transport and internal processes that control concentrations of N and P in the lakes, much less is known about the relative importance of different drivers in explaining spatial variations of lake nutrients and ratios. In this study, we compared N and P concentrations and their ratios in the lakes across China and Europe and examined the differences of dominant environmental and social drivers on lake nutrients. Our comparison showed that total nitrogen (TN) and total phosphorus (TP) concentrations were much higher in the lakes in China compared to those in Europe (i.e., TN: 1.13 mg/L in China vs. 0.64 mg/L in Europe; TP: 35.83 µg/L in China vs. 19.38 µg/L in Europe, the median value). However, lake N/P ratios for both regions were not statistically different. Concentrations of TN and TP showed decoupling in both regions, with the majority of lakes having high N/P mass ratios when evaluated by the commonly accepted threshold of 23 (i.e., 61% in China and 68% in Europe), indicating that phytoplankton are more P limited relative to N. Agricultural activity in the lake catchment is an important predictor for both nutrient concentrations and their ratio in Europe. This reflects successful investments in infrastructure and policy prescriptions in addressing point sources of pollution. In comparison, lake depth and water residence time are important in the decoupling of N and P concentrations in China. The regional difference between the dominant drivers can provide important insights into development of effective water pollution control measures. It is necessary for policy makers and water resource managers to be aware of large-scale imbalance of nutrients in lake due to the potential environmental consequences. A set of spatially flexible policies for water quality controls would be beneficial for sustaining the ecological integrity and future health of lakes.


Subject(s)
Lakes , Phosphorus , Lakes/chemistry , Phosphorus/chemistry , Nitrogen/analysis , Nutrients , China
6.
Nat Commun ; 13(1): 730, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136079

ABSTRACT

Meeting the United Nations' (UN's) 17 Sustainable Development Goals (SDGs) has become a worldwide mission. How these SDGs interrelate, however, is not well known. We assess the interactions between SDGs for the case of water pollution by nutrients in China. The results show 319 interactions between SDGs for clean water (SDGs 6 and 14) and other SDGs, of which 286 are positive (synergies) and 33 are negative (tradeoffs) interactions. We analyze six scenarios in China accounting for the cobenefits of water pollution control using a large-scale water quality model. We consider scenarios that benefit from synergies and avoid tradeoffs. Our results show that effective pollution control requires accounting for the interactions between SDGs. For instance, combining improved nutrient management, efficient food consumption, and climate mitigation is effective for simultaneously meeting SDGs 6 and 14 as well as other SDGs for food, cities and climate. Our study serves as an example of assessing SDG interactions in environmental policies in China as well as in other regions of the world.

7.
Sci Total Environ ; 807(Pt 2): 150710, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34619224

ABSTRACT

Ecological thresholds are useful indicators for water quality managers to define limits to nutrient pollution. A common approach to estimating ecological thresholds is using critical nutrient loads. Critical nutrient loads are typically defined as the loads at which the phytoplankton chlorophyll-a exceeds a certain concentration. However, national policies, such as in China, use chemical indicators (nitrogen and phosphorus concentrations) rather than ecological indicators (phytoplankton chlorophyll-a) to assess water quality. In this study, we uniquely define the critical nutrient loads based on maximum allowable nutrient concentrations for lake Baiyangdian. We assess whether current and future nutrient loads in this lake comply with the Chinese Water Quality standards. To this end, we link two models (MARINA-Lakes and PCLake+). The PCLake+ model was applied to estimate the critical nutrient loads related to ecological thresholds for total nitrogen, total phosphorus and chlorophyll-a. The current (i.e., 2012) and future (i.e., 2050) nutrient loads were derived from the water quality MARINA-Lakes model. Nitrogen loads exceeded the nitrogen threshold in 2012. Phosphorus loads were below all ecological thresholds in 2012. Ecological thresholds are exceeded in 2050 with limited environmental policies, and urbanization may increase nutrient loads above the ecological thresholds in 2050. Recycling and reallocating animal manure is needed to avoid future water pollution in Lake Baiyangdian. Our study highlights the need for effective policies for clean water based on policy-relevant indicators.


Subject(s)
Lakes , Water Quality , Chlorophyll A , Nutrients , Phytoplankton
8.
Water Res ; 202: 117427, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34298277

ABSTRACT

Chinese lakes, including ponds and reservoirs, are increasingly threatened by algal blooms. Yet, each lake is unique, leading to large inter-lake variation in lake vulnerability to algal blooms. Here, we aim to assess the effects of unique lake characteristics on lake vulnerability to algal blooms. To this end, we built a novel and comprehensive database of lake morphometric, climate and sediment characteristics of 19,536 Chinese lakes, including ponds and reservoirs (>0.1 km2). We assessed lake characteristics for nine stratification classes and show that lakes, including ponds and reservoirs, in eastern China typically have a warm stratification class (Tavg>4 °C) and are slightly deeper than those in western China. Model results for representative lakes suggest that the most vulnerable lakes to algal blooms are in eastern China where pollution levels are also highest. Our characterization provides an important baseline to inform policymakers in what regions lakes are potentially most vulnerable to algal blooms.


Subject(s)
Lakes , Ponds , China , Environmental Monitoring , Eutrophication , Geologic Sediments
9.
Proc Natl Acad Sci U S A ; 117(21): 11566-11572, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32385161

ABSTRACT

Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China's populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance.


Subject(s)
Lakes/chemistry , Nitrogen/analysis , Phosphorus/analysis , Wastewater/chemistry , Water Purification , China , Ecosystem , Environmental Monitoring , Water Purification/methods , Water Purification/standards , Water Quality/standards
10.
Sci Total Environ ; 695: 133887, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31756864

ABSTRACT

Worldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models. The established models are based on three key approaches: the empirical approach that employs field surveys, the theoretical approach in which models based on first principles are tested against lab experiments, and the process-based approach that uses parameters and functions representing detailed biogeochemical processes. These approaches have led to an accumulation of field-, lab- and model-based knowledge, respectively. Linking these sources of knowledge would benefit lake management by exploiting complementary information; however, the development of a simple tool that links these approaches was hampered by their large differences in scale and complexity. Here we propose a Generically Parameterized Lake eutrophication model (GPLake) that links field-, lab- and model-based knowledge and can be used to make a first diagnosis of lake water quality. We derived GPLake from consumer-resource theory by the principle that lacustrine phytoplankton is typically limited by two resources: nutrients and light. These limitations are captured in two generic parameters that shape the nutrient to chlorophyll-a relations. Next, we parameterized GPLake, using knowledge from empirical, theoretical, and process-based approaches. GPLake generic parameters were found to scale in a comparable manner across data sources. Finally, we show that GPLake can be applied as a simple tool that provides lake managers with a first diagnosis of the limiting factor and lake water quality, using only the parameters for lake depth, residence time and current nutrient loading. With this first-order assessment, lake managers can easily assess measures such as reducing nutrient load, decreasing residence time or changing depth before spending money on field-, lab- or model- experiments to support lake management.

11.
Sci Total Environ ; 679: 248-259, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31082598

ABSTRACT

Many aquatic ecosystems have deteriorated due to human activities and their restoration is often troublesome. It is proposed here that the restoration success of deteriorated lakes critically depends on hitherto largely neglected spatial heterogeneity in nutrient loading and hydrology. A modelling approach is used to study this hypothesis by considering four lake types with contrasting nutrient loading (point versus diffuse) and hydrology (seepage versus drainage). By comparing the longterm effect of common restoration measures (nutrient load reduction, lake flushing or biomanipulation) in these four lake types, we found that restoration through reduction of nutrient loading is effective in all cases. In contrast, biomanipulation only works in seepage lakes with diffuse nutrient inputs, while lake flushing will even be counterproductive in lakes with nutrient point sources. The main conclusion of the presented analysis is that a priori assessment of spatial heterogeneity caused by nutrient loading and hydrology is essential for successful restoration of lake ecosystems.

12.
Water Res ; 157: 19-29, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30952005

ABSTRACT

Induced bank filtration (IBF) is a water abstraction technology using different natural infiltration systems for groundwater recharge, such as river banks and lake shores. It is a cost-effective pre-treatment method for drinking water production used in many regions worldwide, predominantly in urban areas. Until now, research concerning IBF has almost exclusively focussed on the purification efficiency and infiltration capacity. Consequently, knowledge about the effects on source water bodies is lacking. Yet, IBF interrupts groundwater seepage and affects processes in the sediment potentially resulting in adverse effects on lake or river water quality. Securing sufficient source water quality, however, is important for a sustainable drinking water production by IBF. In this study, we analysed the effects of five predicted mechanisms of IBF on shallow lake ecosystems using the dynamic model PCLake: declining CO2 and nutrient availability, as well as increasing summer water temperatures, sedimentation rates and oxygen penetration into sediments. Shallow lake ecosystems are abundant worldwide and characterised by the occurrence of alternative stable states with either clear water and macrophyte dominance or turbid, phytoplankton-dominated conditions. Our results show that IBF in most scenarios increased phytoplankton abundance and thus had adverse effects on shallow lake water quality. Threshold levels for critical nutrient loading inducing regime shifts from clear to turbid conditions were up to 80% lower with IBF indicating a decreased resilience to eutrophication. The effects were strongest when IBF interrupted the seepage of CO2 rich groundwater resulting in lower macrophyte growth. IBF could also enhance water quality, but only when interrupting the seepage of groundwater with high nutrient concentrations. Higher summer water temperatures increased the share of cyanobacteria in the phytoplankton community and thus the risk of toxin production. In relative terms, the effects of changing sedimentation rates and oxygen penetration were small. Lake depth and size influenced the effect of IBF on critical nutrient loads, which was strongest in shallower and smaller lakes. Our model results stress the need of a more comprehensive ecosystem perspective including an assessment of IBF effects on threshold levels for regime shifts to prevent high phytoplankton abundance in the source water body and secure a sustainable drinking water supply.


Subject(s)
Drinking Water , Ecosystem , Eutrophication , Lakes , Phytoplankton
13.
Sci Total Environ ; 664: 865-873, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30769310

ABSTRACT

Intensive agriculture and rapid urbanization have increased nutrient inputs to Lake Taihu in recent decades. This resulted in eutrophication. We aim to better understand the sources of river export of total dissolved nitrogen (TDN) and phosphorus (TDP) to Lake Taihu in relation to critical nutrient loads. We implemented the MARINA-Lake (Model to Assess River Inputs of Nutrients to seAs) model for Lake Taihu. The MARINA-Lake model quantifies river export of dissolved inorganic and organic N and P to the lake by source from sub-basins. Results from the PCLake model are used to identify to what extent river export of nutrients exceeds critical loads. We calculate that rivers exported 61 kton of TDN and 2 kton of TDP to Lake Taihu in 2012. More than half of these nutrients were from human activities (e.g., agriculture, urbanization) in Sub-basins I (north) and IV (south). Most of the nutrients were in dissolved inorganic forms. Diffuse sources contributed 90% to river export of TDN with a relatively large share of synthetic fertilizers. Point sources contributed 52% to river export of TDP with a relatively large share of sewage systems. The relative shares of diffuse and point sources varied greatly among nutrient forms and sub-basins. To meet critical loads, river export of TDN and TDP needs to be reduced by 46-92%, depending on the desired level of chlorophyll-a. There are different opportunities to meet the critical loads. Reducing N inputs from synthetic fertilizers and P from sewage systems may be sufficient to meet the least strict critical loads. A combination of reductions in diffuse and point sources is needed to meet the most strict critical loads. Combining improved nutrient use efficiencies and best available technologies in wastewater treatment may be an effective opportunity. Our study can support the formulation of effective solutions for lake restoration.


Subject(s)
Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , China , Eutrophication , Lakes/chemistry , Water Pollution, Chemical/statistics & numerical data
14.
Front Plant Sci ; 9: 194, 2018.
Article in English | MEDLINE | ID: mdl-29515607

ABSTRACT

Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined.

15.
Nat Ecol Evol ; 1(11): 1616-1624, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29038522

ABSTRACT

There is a pressing need to apply stability and resilience theory to environmental management to restore degraded ecosystems effectively and to mitigate the effects of impending environmental change. Lakes represent excellent model case studies in this respect and have been used widely to demonstrate theories of ecological stability and resilience that are needed to underpin preventative management approaches. However, we argue that this approach is not yet fully developed because the pursuit of empirical evidence to underpin such theoretically grounded management continues in the absence of an objective probability framework. This has blurred the lines between intuitive logic (based on the elementary principles of probability) and extensional logic (based on assumption and belief) in this field.


Subject(s)
Conservation of Natural Resources , Ecosystem , Lakes , Conservation of Water Resources , Ecology
16.
Water Res ; 119: 276-287, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28477543

ABSTRACT

Ongoing eutrophication frequently causes toxic phytoplankton blooms. This induces huge worldwide challenges for drinking water quality, food security and public health. Of crucial importance in avoiding and reducing blooms is to determine the maximum nutrient load ecosystems can absorb, while remaining in a good ecological state. These so called critical nutrient loads for lakes depend on the shape of the load-response curve. Due to spatial variation within lakes, load-response curves and therefore critical nutrient loads could vary throughout the lake. In this study we determine spatial patterns in critical nutrient loads for Lake Taihu (China) with a novel modelling approach called Spatial Ecosystem Bifurcation Analysis (SEBA). SEBA evaluates the impact of the lake's total external nutrient load on the local lake dynamics, resulting in a map of critical nutrient loads for different locations throughout the lake. Our analysis shows that the largest part of Lake Taihu follows a nonlinear load-response curve without hysteresis. The corresponding critical nutrient loads vary within the lake and depend on management goals, i.e. the maximum allowable chlorophyll concentration. According to our model, total nutrient loads need to be more than halved to reach chlorophyll-a concentrations of 30-40 µg L-1 in most sections of the lake. To prevent phytoplankton blooms with 20 µg L-1 chlorophyll-a throughout Lake Taihu, both phosphorus and nitrogen loads need a nearly 90% reduction. We conclude that our approach is of great value to determine critical nutrient loads of lake ecosystems such as Taihu and likely of spatially heterogeneous ecosystems in general.


Subject(s)
Environmental Monitoring , Eutrophication , Phytoplankton , China , Lakes , Phosphorus
17.
Environ Manage ; 59(4): 619-634, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28044182

ABSTRACT

Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo-to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Hydrocharitaceae/growth & development , Lakes/chemistry , Models, Theoretical , Phytoplankton/growth & development , Biomass , Phosphorus/analysis
18.
Glob Chang Biol ; 23(2): 737-754, 2017 02.
Article in English | MEDLINE | ID: mdl-27391103

ABSTRACT

Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when implementing hydrological regulation for aquatic ecosystems around the globe.


Subject(s)
Ecosystem , Eutrophication , Lakes , China , Humans , Hydrology
19.
Proc Natl Acad Sci U S A ; 113(50): E8089-E8095, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911776

ABSTRACT

Ecosystems can show sudden and persistent changes in state despite only incremental changes in drivers. Such critical transitions are difficult to predict, because the state of the system often shows little change before the transition. Early-warning indicators (EWIs) are hypothesized to signal the loss of system resilience and have been shown to precede critical transitions in theoretical models, paleo-climate time series, and in laboratory as well as whole lake experiments. The generalizability of EWIs for detecting critical transitions in empirical time series of natural aquatic ecosystems remains largely untested, however. Here we assessed four commonly used EWIs on long-term datasets of five freshwater ecosystems that have experienced sudden, persistent transitions and for which the relevant ecological mechanisms and drivers are well understood. These case studies were categorized by three mechanisms that can generate critical transitions between alternative states: competition, trophic cascade, and intraguild predation. Although EWIs could be detected in most of the case studies, agreement among the four indicators was low. In some cases, EWIs were detected considerably ahead of the transition. Nonetheless, our results show that at present, EWIs do not provide reliable and consistent signals of impending critical transitions despite using some of the best routinely monitored freshwater ecosystems. Our analysis strongly suggests that a priori knowledge of the underlying mechanisms driving ecosystem transitions is necessary to identify relevant state variables for successfully monitoring EWIs.


Subject(s)
Ecosystem , Fresh Water , Models, Biological , Animals , Biostatistics , Climate , Eutrophication , Food Chain , Lakes , Predatory Behavior , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...