Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 140(6): 4154, 2016 12.
Article in English | MEDLINE | ID: mdl-28040027

ABSTRACT

The Struve functions Hn(z), n=0, 1, ... are approximated in a simple, accurate form that is valid for all z≥0. The authors previously treated the case n = 1 that arises in impedance calculations for the rigid-piston circular radiator mounted in an infinite planar baffle [Aarts and Janssen, J. Acoust. Soc. Am. 113, 2635-2637 (2003)]. The more general Struve functions occur when other acoustical quantities and/or non-rigid pistons are considered. The key step in the paper just cited is to express H1(z) as (2/π)-J0(z)+(2/π) I(z), where J0 is the Bessel function of order zero and the first kind and I(z) is the Fourier cosine transform of [(1-t)/(1+t)]1/2, 0≤t≤1. The square-root function is optimally approximated by a linear function ct+d̂, 0≤t≤1, and the resulting approximated Fourier integral is readily computed explicitly in terms of sin z/z and (1-cos z)/z2. The same approach has been used by Maurel, Pagneux, Barra, and Lund [Phys. Rev. B 75, 224112 (2007)] to approximate H0(z) for all z≥0. In the present paper, the square-root function is optimally approximated by a piecewise linear function consisting of two linear functions supported by [0,t̂0] and [t̂0,1] with t̂0 the optimal take-over point. It is shown that the optimal two-piece linear function is actually continuous at the take-over point, causing a reduction of the additional complexity in the resulting approximations of H0 and H1. Furthermore, this allows analytic computation of the optimal two-piece linear function. By using the two-piece instead of the one-piece linear approximation, the root mean square approximation error is reduced by roughly a factor of 3 while the maximum approximation error is reduced by a factor of 4.5 for H0 and of 2.6 for H1. Recursion relations satisfied by Struve functions, initialized with the approximations of H0 and H1, yield approximations for higher order Struve functions.

2.
J Opt Soc Am A Opt Image Sci Vis ; 32(6): 1146-59, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26367050

ABSTRACT

The three-dimensional frequency transfer function for optical imaging systems was introduced by Frieden in the 1960s. The analysis of this function and its partly back-transformed functions (two-dimensional and one-dimensional optical transfer functions) in the case of an ideal or aberrated imaging system has received relatively little attention in the literature. Regarding ideal imaging systems with an incoherently illuminated object volume, we present analytic expressions for the classical two-dimensional x-y-transfer function in a defocused plane, for the axial z-transfer function in the presence of defocusing and for the x-z-transfer function in the presence of a lateral shift δy with respect to the imaged pattern in the x-z-plane. For an aberrated imaging system we use the common expansion of the aberrated pupil function with the aid of Zernike polynomials. It is shown that the line integral appearing in Frieden's three-dimensional transfer function can be evaluated for aberrated systems using a relationship established first by Cormack between the line integral of a Zernike polynomial over a full chord of the unit disk and a Chebyshev polynomial of the second kind. Some new developments in the theory of Zernike polynomials from the last decade allow us to present explicit expressions for the line integral in the case of a weakly aberrated imaging system. We outline a similar, but more complicated, analytic scheme for the case of severely aberrated systems.

3.
Appl Opt ; 53(12): 2562-82, 2014 Apr 20.
Article in English | MEDLINE | ID: mdl-24787582

ABSTRACT

In this paper, a new methodology is presented to derive the aberration state of a lithographic projection system from wafer metrology data. For this purpose, new types of phase-shift gratings (PSGs) are introduced, with special features that give rise to a simple linear relation between the PSG image displacement and the phase aberration function of the imaging system. By using the PSGs as the top grating in a diffraction-based overlay stack, their displacement can be measured as an overlay error using a standard wafer metrology tool. In this way, the overlay error can be used as a measurand based on which the phase aberration function in the exit pupil of the lithographic system can be reconstructed. In practice, the overlay error is measured for a set of different PSG targets, after which this information serves as input to a least-squares optimization problem that, upon solving, provides estimates for the Zernike coefficients describing the aberration state of the lithographic system. In addition to a detailed method description, this paper also deals with the additional complications that arise when the method is implemented experimentally and this leads to a number of model refinements and a required calibration step. Finally, the overall performance of the method is assessed through a number of experiments in which the aberration state of the lithographic system is intentionally detuned and subsequently estimated by the new method. These experiments show a remarkably good agreement, with an error smaller than 5 mλ, among the requested aberrations, the aberrations measured by the on-tool aberration sensor, and the results of the new wafer-based method.

4.
J Opt Soc Am A Opt Image Sci Vis ; 30(6): 1213-22, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-24323109

ABSTRACT

Various authors have presented the aberration function of an optical system as a power series expansion with respect to the ray coordinates in the exit pupil and the coordinates of the intersection point with the image field of the optical system. In practical applications, for reasons of efficiency and accuracy, an expansion with the aid of orthogonal polynomials is preferred for which, since the 1980s, orthogonal Zernike polynomials have become the reference. In the literature, some conversion schemes of power series coefficients to coefficients for the corresponding Zernike polynomial expansion have been given. In this paper we present an analytic solution for the conversion problem from a power series expansion in three or four dimensions to a double Zernike polynomial expansion. The solution pertains to a general optical system with four independent pupil and field coordinates and to a system with rotational symmetry in which case three independent coordinate combinations have to be considered. The conversion of the coefficients is analytically in closed form and the result is independent of a specific sampling scheme or sampling density as this is the case for the commonly used least squares fitting techniques. Computation schemes are given that allow the evaluation of coefficients of arbitrarily high order in pupil and field coordinates.

5.
Acta Crystallogr A ; 68(Pt 5): 561-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22893239

ABSTRACT

Ultrashort X-ray pulses from free-electron laser X-ray sources make it feasible to conduct small- and wide-angle scattering experiments on biomolecular samples in solution at sub-picosecond timescales. During these so-called fluctuation scattering experiments, the absence of rotational averaging, typically induced by Brownian motion in classic solution-scattering experiments, increases the information content of the data. In order to perform shape reconstruction or structure refinement from such data, it is essential to compute the theoretical profiles from three-dimensional models. Based on the three-dimensional Zernike polynomial expansion models, a fast method to compute the theoretical fluctuation scattering profiles has been derived. The theoretical profiles have been validated against simulated results obtained from 300 000 scattering patterns for several representative biomolecular species.


Subject(s)
Models, Statistical , X-Ray Diffraction/methods , Algorithms , Electrons , Lasers , Models, Molecular , Models, Theoretical , Scattering, Small Angle
6.
J Acoust Soc Am ; 129(5): 2952-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21568398

ABSTRACT

The theory of orthogonal polynomial (Zernike) expansions of functions on a disk, as used in the diffraction theory of optical aberrations, is applied to obtain (semi-) analytical expressions for the spatial impulse responses arising from a non-uniformly moving, baffled, circular piston. These expressions are in terms of the expansion coefficients of the non-uniformity and the responses of the orthogonal expansion functions. The latter impulse responses have a closed form as finite series involving the Legendre functions and the sinc function. The method is compared with a similar method, proposed by P. R. Stepanishen [J. Acoust. Soc. Am. 70, 1176-1181 (1981)] where zeroth order orthogonal Bessel functions, rather than Zernike polynomials, are used as expansion functions.

7.
J Acoust Soc Am ; 127(4): 2262-73, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20370007

ABSTRACT

It has been argued that the sound radiation of a loudspeaker is modeled realistically by assuming the loudspeaker cabinet to be a rigid sphere with a resilient spherical cap. Series expansions, valid in the whole space outside the sphere, for the pressure due to a harmonically excited cap with an axially symmetric velocity distribution are presented. The velocity profile is expanded in functions orthogonal on the cap, rather than on the whole sphere. As a result, only a few expansion coefficients are sufficient to accurately describe the velocity profile. An adaptation of the standard solution of the Helmholtz equation to this particular parametrization is required. This is achieved by using recent results on argument scaling of orthogonal (Zernike) polynomials. The approach is illustrated by calculating the pressure due to certain velocity profiles that vanish at the rim of the cap to a desired degree. The associated inverse problem, in which the velocity profile is estimated from pressure measurements around the sphere, is also feasible as the number of expansion coefficients to be estimated is limited. This is demonstrated with a simulation.


Subject(s)
Acoustics/instrumentation , Amplifiers, Electronic , Models, Statistical , Sound , Transducers , Computer Simulation , Equipment Design , Motion , Numerical Analysis, Computer-Assisted , Pressure , Time Factors , Vibration
8.
J Acoust Soc Am ; 126(4): 1776-87, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19813792

ABSTRACT

Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either Stenzel functions (1-(sigma/a)2)n, with sigma the radial coordinate on the radiator, or linear combinations of Zernike functions Pn(2(sigma/a)2-1), with Pn the Legendre polynomial of degree n. Both sets of functions give rise, via King's integral for the pressure, to integrals for the quantities of interest involving the product of two Bessel functions. These integrals have a power series expansion and allow an expression in terms of Bessel functions of the first kind and Struve functions. Consequently, many of the results in [M. Greenspan, J. Acoust. Soc. Am. 65, 608-621 (1979)] are generalized and treated in a unified manner. A foreseen application is for loudspeakers. The relation between the radiated power in the near-field on one hand and in the far field on the other is highlighted.

9.
J Acoust Soc Am ; 125(3): 1444-55, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19275302

ABSTRACT

On-axis and far-field series expansions are developed for the sound pressure due to an arbitrary, circular symmetric velocity distribution on a flat radiator in an infinite baffle. These expansions are obtained by expanding the velocity distributions in terms of orthogonal polynomials R(2n) (0)(sigma/a)=P(n)(2(sigma/a)(2)-1) with P(n) the Legendre polynomials. The terms R(2n) (0) give rise to a closed-form expression for the pressure on-axis as well as for the far-field pressure. Furthermore, for a large number of velocity profiles, including those associated with the rigid piston, the simply supported radiator, and the clamped radiators as well as Gaussian radiators, there are closed-form expressions for the required expansion coefficients. In particular, for the rigid, simply supported, and clamped radiators, this results in explicit finite-series expressions for both the on-axis and far-field pressures. In the reverse direction, a method of estimating velocity distributions from (measured) on-axis pressures by matching in terms of expansion coefficients is proposed. Together with the forward far-field computation scheme, this yields a method for far-field loudspeaker assessment from on-axis data (generalized Keele scheme). The forward computation scheme is extended to dome-shaped radiators with arbitrary velocity distributions.

10.
J Opt Soc Am A Opt Image Sci Vis ; 25(6): 1459-66, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18516158

ABSTRACT

We demonstrate that the effect of object shift in an elliptical, astigmatic Gaussian beam does not affect the optimal fractional orders used to reconstruct the holographic image of a particle or another opaque object in the field. Simulations and experimental results are presented.

11.
J Opt Soc Am A Opt Image Sci Vis ; 22(12): 2635-50, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16396023

ABSTRACT

The judgment of the imaging quality of an optical system can be carried out by examining its through-focus intensity distribution. It has been shown in a previous paper that a scalar-wave analysis of the imaging process according to the extended Nijboer-Zernike theory allows the retrieval of the complex pupil function of the imaging system, including aberrations as well as transmission variations. However, the applicability of the scalar analysis is limited to systems with a numerical aperture (NA) value of the order of 0.60 or less; beyond these values polarization effects become significant. In this scalar retrieval method, the complex pupil function is represented by means of the coefficients of its expansion in a series involving the Zernike polynomials. This representation is highly efficient, in terms of number and magnitude of the required coefficients, and lends itself quite well to matching procedures in the focal region. This distinguishes the method from the retrieval schemes in the literature, which are normally not based on Zernike-type expansions, and rather rely on point-by-point matching procedures. In a previous paper [J. Opt. Soc. Am. A 20, 2281 (2003)] we have incorporated the extended Nijboer-Zernike approach into the Ignatowsky-Richards/Wolf formalism for the vectorial treatment of optical systems with high NA. In the present paper we further develop this approach by defining an appropriate set of functions that describe the energy density distribution in the focal region. Using this more refined analysis, we establish the set of equations that allow the retrieval of aberrations and birefringence from the intensity point-spread function in the focal volume for high-NA systems. It is shown that one needs four analyses of the intensity distribution in the image volume with different states of polarization in the entrance pupil. Only in this way will it be possible to retrieve the "vectorial" pupil function that includes the effects of birefringence induced by the imaging system. A first numerical test example is presented that illustrates the importance of using the vectorial approach and the correct NA value in the aberration retrieval scheme.


Subject(s)
Algorithms , Artifacts , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Optics and Photonics , Refractometry/methods , Birefringence
12.
J Opt Soc Am A Opt Image Sci Vis ; 20(12): 2281-92, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14686507

ABSTRACT

Taking the classical Ignatowsky/Richards and Wolf formulas as our starting point, we present expressions for the electric field components in the focal region in the case of a high-numerical-aperture optical system. The transmission function, the aberrations, and the spatially varying state of polarization of the wave exiting the optical system are represented in terms of a Zernike polynomial expansion over the exit pupil of the system; a set of generally complex coefficients is needed for a full description of the field in the exit pupil. The field components in the focal region are obtained by means of the evaluation of a set of basic integrals that all allow an analytic treatment; the expressions for the field components show an explicit dependence on the complex coefficients that characterize the optical system. The electric energy density and the power flow in the aberrated three-dimensional distribution in the focal region are obtained with the expressions for the electric and magnetic field components. Some examples of aberrated focal distributions are presented, and some basic characteristics are discussed.

13.
J Acoust Soc Am ; 113(5): 2635-7, 2003 May.
Article in English | MEDLINE | ID: mdl-12765381

ABSTRACT

The problem of the rigid-piston radiator mounted in an infinite baffle has been studied widely for tutorial as well as for practical reasons. The resulting theory is commonly applied to model a loudspeaker in the audio-frequency range. A special function, the Struve function H1 (z), occurs in the expressions for the rigid-piston radiator. This Struve function is not readily available in programs such as Matlab or Mathcad, nor in computer languages such as FORTRAN and C. Therefore a simple and effective approximation of H1 (z) which is valid for all z is developed. Some examples of the application of the Struve function in acoustics are presented.

14.
J Opt Soc Am A Opt Image Sci Vis ; 19(5): 849-57, 2002 May.
Article in English | MEDLINE | ID: mdl-11999961

ABSTRACT

New Bessel-series representations for the calculation of the diffraction integral are presented yielding the point-spread function of the optical system, as occurs in the Nijboer-Zernike theory of aberrations. In this analysis one can allow an arbitrary aberration and a defocus part. The representations are presented in full detail for the cases of coma and astigmatism. The analysis leads to stably converging results in the case of large aberration or defocus values, while the applicability of the original Nijboer-Zernike theory is limited mainly to wave-front deviations well below the value of one wavelength. Because of its intrinsic speed, the analysis is well suited to supplement or to replace numerical calculations that are currently used in the fields of (scanning) microscopy, lithography, and astronomy. In a companion paper [J. Opt. Soc. Am. A 19, 860 (2002)], physical interpretations and applications in a lithographic context are presented, a convergence analysis is given, and a comparison is made with results obtained by using a numerical package.

15.
J Opt Soc Am A Opt Image Sci Vis ; 19(5): 858-70, 2002 May.
Article in English | MEDLINE | ID: mdl-11999962

ABSTRACT

We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on ecently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.

SELECTION OF CITATIONS
SEARCH DETAIL
...