Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 52(22): 13004-13, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24175921

ABSTRACT

Tetranuclear carboxylate clusters with the general structural formula [M4(L)2(O2CR)4] (M = Cd, Zn; LH2 = 2,6-bis(1-(2-hydroxyphenyl)-iminoethyl)pyridine; R = CH3, C6H5) were studied by variable-temperature (VT) (1)H NMR spectroscopy. The dynamics of these clusters in solution can be described by two uncorrelated dynamical processes. The first dynamical process is the interconversion, both inter- as well as intramolecular, between syn-syn bridging and chelating carboxylate ligands. It is shown that this carboxylate interconversion mechanism is predominantly intramolecular for [Cd4(L)2(O2CCH3)4] (1a), whereas for [Zn4(L)2(O2CCH3)4] (2a) it is predominantly intermolecular. Two models for the second dynamic process, which involves the diiminepyridine ligand, are described. The first model comprises a nondissociative rotation around an internal axis, which changes the chirality of the cluster. The second model is based on the dissociation of the tetranuclear cluster into two dimeric species, which recombine again. This last model is supported by scrambling experiments between [Zn4(L)2(O2CCH3)4] (2a) and [Zn4(L3)2(O2CCH3)4] (5) (L3H2 = 2,6-bis(1-(2-hydroxyphenyl)-iminoethyl)4-chloropyridine).


Subject(s)
Carboxylic Acids/chemistry , Pyridines/chemistry , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Temperature
2.
Inorg Chem ; 48(24): 11903-8, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-19916527

ABSTRACT

A method is presented to design magnetic molecules in which the exchange interaction between adjacent metal ions is controlled by electron density withdrawal through their bridging ligands. We synthesized a novel Mn(4) cluster in which the choice of the bridging carboxylate ligands (acetate, benzoate, or trifluoroacetate) determines the type and strength of the three magnetic exchange couplings (J(1), J(2), and J(3)) present between the metal ions. Experimentally measured magnetic moments in high magnetic fields show that, upon electron density withdrawal, the main antiferromagnetic exchange constant J(1) decreases from -2.2 K for the [Mn(4)(OAc)(4)] cluster to -1.9 K for the [Mn(4)(H(5)C(6)COO)(4)] cluster and -0.6 K for the [Mn(4)(F(3)CCOO)(4)] cluster, while J(2) decreases from -1.1 K to nearly 0 K and J(3) changes to a small ferromagnetic coupling. These experimental results are further supported with density-functional theory calculations based on the obtained crystallographic structures of the [Mn(4)(OAc)(4)] and [Mn(4)(F(3)CCOO)(4)] clusters.


Subject(s)
Acetates/chemistry , Benzoates/chemistry , Magnetics , Manganese/chemistry , Organometallic Compounds/chemistry , Trifluoroacetic Acid/chemistry , Computer Simulation , Crystallography, X-Ray , Ligands , Models, Chemical , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...