Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 180(4): 503-10, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20012662

ABSTRACT

The effects of progressive hypoxia and re-oxygenation on cardiac function, white muscle perfusion and haemoglobin saturation were investigated in anaesthetised snapper (Pagrus auratus). White muscle perfusion and haemoglobin saturation were recorded in real time using fibre optic methodology. A marked fall in heart rate (HR) was evoked when the water bath dissolved oxygen (DO) concentration decreased below 1.5 mg L(-1). This bradycardia deepened over the subsequent 20 min of progressive hypoxia and noticeable arrhythmias occurred, suggesting that hypoxia had direct and severe effects on the cardiac myocytes. Perfusion to the white muscle decreased below a DO concentration of 3 mg L(-1), and oxyhaemoglobin concentration decreased once the DO fell below ca. 2 mg L(-1). During re-oxygenation, heart rate and white muscle perfusion increased as the DO concentration exceeded 1.9 +/- 0.1 mg L(-1), whereas haemoglobin saturation increased once the external DO concentration reached 2.9 mg L(-1). These changes occurred in anaesthetised fish, in which sensory function must be impaired, if not abolished. As white muscle perfusion both fell and increased prior to changes in white muscle oxyhaemoglobin saturation, a local hypoxia is more likely to be the consequence than the cause of the reduced blood delivery, and changes upstream from the tail vasculature must be responsible. HR and tissue haemoglobin concentrations did increase simultaneously on re-oxygenation suggesting an increased cardiac output as the cause.


Subject(s)
Heart Rate/physiology , Hemoglobins/metabolism , Hypoxia/physiopathology , Muscle Fibers, Fast-Twitch/physiology , Oxygen/metabolism , Perciformes/physiology , Analysis of Variance , Animals , Electrocardiography , Fiber Optic Technology/methods , Reperfusion
2.
J Microsc ; 218(Pt 1): 79-83, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15817066

ABSTRACT

Cryo field emission scanning electron microscopy (cryo-FE-SEM) is a versatile technique that allows the investigation of the three-dimensional organization of cells at the ultrastructural level over a wide range of magnifications. Unfortunately, cryopreparation of the specimens for this technique remains cumbersome, in particular because ice crystal formation must be prevented during freezing. Here we report that a light prefixation with glutaraldehyde and incubation in glycerol as cryoprotectant or a high-pressure freezing approach are both excellent procedures for cryopreparation of animal cells to be used in combination with cryo-FE-SEM. Using the proopiomelanocortin-producing intermediate pituitary melanotrope cells of Xenopus laevis as a physiologically inducible neuroendocrine system, we compared the ultrastructural characteristics of inactive and hyperactive neuroendocrine cells. The overall quality of the ultrastructural images was comparable for the two cryopreparation procedures, although some fine structures were better conserved using high-pressure freezing. Melanotrope cells in a secretory inactive state contained numerous storage granules and a poorly developed endoplasmic reticulum (ER), while large amounts of rough ER were present in hyperactive cells. Thus, the cryo-FE-SEM approach described here allows a fast ultrastructural study on the secretory activity of neuroendocrine cells.


Subject(s)
Cryoelectron Microscopy/methods , Microscopy, Electron, Scanning/methods , Neurosecretory Systems/physiology , Neurosecretory Systems/ultrastructure , Animals , Freeze Fracturing , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...