Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
J Sci Food Agric ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816930

ABSTRACT

BACKGROUND: Low rumen pH is proposed to be a major mechanism for low methane (CH4) emissions from sheep fed forage rape. However, it is difficult to separate this from other in vivo factors, such as rumen passage rate. The objective of this study was to determine the effect of pH alone on CH4 production in vitro using different pH buffers. Ryegrass, white clover and forage rape were incubated in vitro using three different incubation buffers with starting pH values of 5.5, 6.2 and 6.8. RESULTS: Decreasing pH reduced overall in vitro CH4 emission relative to fermented hexoses (CH4/FHex) by up to 54% and overall fermentation by 40%. pH also changed fermentation profiles where the acetate + butyrate to propionate + valerate ratio decreased when pH decreased. Within the three forages, forage rape led to the lowest CH4/FHex, but only in pH 5.5 and 6.2 buffer, and this was enhanced when the pH fell below 6. CONCLUSION: Reducing pH in vitro decreased CH4 production and overall fermentation across all forages. The lower pH reached by forage rape compared to ryegrass and white clover appears to drive the lower CH4 production relative to the extent of fermentation from forage rape compared to the other forages. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Nat Commun ; 15(1): 4608, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816391

ABSTRACT

Object recognition and categorization are essential cognitive processes which engage considerable neural resources in the human ventral visual stream. However, the tuning properties of human ventral stream neurons for object shape and category are virtually unknown. We performed large-scale recordings of spiking activity in human Lateral Occipital Complex in response to stimuli in which the shape dimension was dissociated from the category dimension. Consistent with studies in nonhuman primates, the neuronal representations were primarily shape-based, although we also observed category-like encoding for images of animals. Surprisingly, linear decoders could reliably classify stimulus category even in data sets that were entirely shape-based. In addition, many recording sites showed an interaction between shape and category tuning. These results represent a detailed study on shape and category coding at the neuronal level in the human ventral visual stream, furnishing essential evidence that reconciles human imaging and macaque single-cell studies.


Subject(s)
Neurons , Photic Stimulation , Visual Cortex , Humans , Visual Cortex/physiology , Neurons/physiology , Male , Female , Pattern Recognition, Visual/physiology , Adult , Animals , Young Adult , Visual Pathways/physiology
3.
PLoS Biol ; 22(5): e3002358, 2024 May.
Article in English | MEDLINE | ID: mdl-38768251

ABSTRACT

Neurons responding during action execution and action observation were discovered in the ventral premotor cortex 3 decades ago. However, the visual features that drive the responses of action observation/execution neurons (AOENs) have not been revealed at present. We investigated the neural responses of AOENs in ventral premotor area F5c of 4 macaques during the observation of action videos and crucial control stimuli. The large majority of AOENs showed highly phasic responses during the action videos, with a preference for the moment that the hand made contact with the object. They also responded to an abstract shape moving towards but not interacting with an object, even when the shape moved on a scrambled background, implying that most AOENs in F5c do not require the perception of causality or a meaningful action. Additionally, the majority of AOENs responded to static frames of the videos. Our findings show that very elementary stimuli, even without a grasping context, are sufficient to drive responses in F5c AOENs.


Subject(s)
Motor Cortex , Neurons , Photic Stimulation , Animals , Motor Cortex/physiology , Photic Stimulation/methods , Neurons/physiology , Male , Macaca mulatta/physiology , Visual Perception/physiology , Macaca/physiology
4.
Microbiol Resour Announc ; 13(4): e0004324, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38426731

ABSTRACT

Methanosphaera spp. are methylotrophic methanogenic archaea and members of the order Methanobacteriales with few cultured representatives. Methanosphaera sp. ISO3-F5 was isolated from sheep rumen contents in New Zealand. Here, we report its complete genome, consisting of a large chromosome and a megaplasmid (GenBank accession numbers CP118753 and CP118754, respectively).

5.
Appl Environ Microbiol ; 90(2): e0149223, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38299813

ABSTRACT

The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.


Subject(s)
Deer , Rumen , Humans , Animals , Anaerobiosis , Rumen/microbiology , Herbivory , Fungi/genetics , Ruminants
6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365243

ABSTRACT

Ruminants are essential for global food security, but these are major sources of the greenhouse gas methane. Methane yield is controlled by the cycling of molecular hydrogen (H2), which is produced during carbohydrate fermentation and is consumed by methanogenic, acetogenic, and respiratory microorganisms. However, we lack a holistic understanding of the mediators and pathways of H2 metabolism and how this varies between ruminants with different methane-emitting phenotypes. Here, we used metagenomic, metatranscriptomic, metabolomics, and biochemical approaches to compare H2 cycling and reductant disposal pathways between low-methane-emitting Holstein and high-methane-emitting Jersey dairy cattle. The Holstein rumen microbiota had a greater capacity for reductant disposal via electron transfer for amino acid synthesis and propionate production, catalyzed by enzymes such as glutamate synthase and lactate dehydrogenase, and expressed uptake [NiFe]-hydrogenases to use H2 to support sulfate and nitrate respiration, leading to enhanced coupling of H2 cycling with less expelled methane. The Jersey rumen microbiome had a greater proportion of reductant disposal via H2 production catalyzed by fermentative hydrogenases encoded by Clostridia, with H2 mainly taken up through methanogenesis via methanogenic [NiFe]-hydrogenases and acetogenesis via [FeFe]-hydrogenases, resulting in enhanced methane and acetate production. Such enhancement of electron incorporation for metabolite synthesis with reduced methanogenesis was further supported by two in vitro measurements of microbiome activities, metabolites, and public global microbiome data of low- and high-methane-emitting beef cattle and sheep. Overall, this study highlights the importance of promoting alternative H2 consumption and reductant disposal pathways for synthesizing host-beneficial metabolites and reducing methane production in ruminants.


Subject(s)
Euryarchaeota , Reducing Agents , Cattle , Sheep , Animals , Reducing Agents/metabolism , Methane/metabolism , Hydrogen/metabolism , Ruminants/metabolism , Fermentation , Euryarchaeota/metabolism , Rumen/metabolism
7.
Mov Disord ; 39(1): 85-93, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37860957

ABSTRACT

BACKGROUND: Preserved cycling capabilities in patients with Parkinson's disease, especially in those with freezing of gait are still poorly understood. Previous research with invasive local field potential recordings in the subthalamic nucleus has shown that cycling causes a stronger suppression of ß oscillations compared to walking, which facilitates motor continuation. METHODS: We recorded local field potentials from 12 patients with Parkinson's disease (six without freezing of gait, six with freezing of gait) who were bilaterally implanted with deep brain stimulation electrodes in the subthalamic nucleus. We investigated ß (13-30 Hz) and high γ (60-100 Hz) power during both active and passive cycling with different cadences and compared patients with and without freezing of gait. The passive cycling experiment, where a motor provided a fixed cadence, allowed us to study the effect of isolated sensory inputs without physical exercise. RESULTS: We found similarly strong suppression of pathological ß activity for both active and passive cycling. In contrast, there was stronger high γ band activity for active cycling. Notably, the effects of active and passive cycling were all independent of cadence. Finally, ß suppression was stronger for patients with freezing of gait, especially during passive cycling. CONCLUSIONS: Our results provide evidence for a link between proprioceptive input during cycling and ß suppression. These findings support the role of continuous external sensory input and proprioceptive feedback during rhythmic passive cycling movements and suggest that systematic passive mobilization might hold therapeutic potential. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Gait Disorders, Neurologic , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/complications , Gait Disorders, Neurologic/etiology , Walking , Gait/physiology , Deep Brain Stimulation/methods , Beta Rhythm/physiology
8.
Sci Rep ; 13(1): 21305, 2023 12 02.
Article in English | MEDLINE | ID: mdl-38042941

ABSTRACT

Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.


Subject(s)
Methane , Rumen , Sheep , Animals , Female , Bayes Theorem , Ruminants , Diet/veterinary , Bacteria/genetics , Animal Feed/analysis , Lactation
9.
Animals (Basel) ; 13(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38136895

ABSTRACT

Increasing the efficiency of rumen fermentation is one of the main ways to maximize the production of ruminants. It is therefore important to understand the ruminal microbiome, as well as environmental influences on that community. However, there are no studies that describe the ruminal microbiota in buffaloes in the Amazon. The objective of this study was to characterize the rumen microbiome of the water buffalo (Bubalus bubalis) in the eastern Amazon in the dry and rainy seasons in three grazing ecosystems: Baixo Amazonas (BA), Continente do Pará (CP), Ilha do Marajó (IM), and in a confinement system: Tomé-Açu (TA). Seventy-one crossbred male buffaloes (Murrah × Mediterranean) were used, aged between 24 and 36 months, with an average weight of 432 kg in the rainy season and 409 kg in the dry season, and fed on native or cultivated pastures. In the confinement system, the feed consisted of sorghum silage, soybean meal, wet sorghum premix, and commercial feed. Samples of the diet from each ecosystem were collected for bromatological analysis. The collections of ruminal content were carried out in slaughterhouses, with the rumen completely emptied and homogenized, the solid and liquid fractions separated, and the ruminal pH measured. DNA was extracted from the rumen samples, then sequenced using Restriction Enzyme Reduced Representation Sequencing. The taxonomic composition was largely similar between ecosystems. All 61 genera in the reference database were recognized, including members of the domains Bacteria and Archaea. The abundance of 23 bacterial genera differed significantly (p < 0.01) between the Tomé-Açu confinement and other ecosystems. Bacillus, Ruminococcus, and Bacteroides had lower abundance in samples from the Tomé-Açu system. Among the Archaea, the genus Methanomicrobium was less abundant in Tomé-Açu, while Methanosarcina was more abundant. There was a difference caused by all evaluated factors, but the diet (available or offered) was what most influenced the ruminal microbiota.

10.
Appl Environ Microbiol ; 89(10): e0063423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37800930

ABSTRACT

Hydrogen (H2) is the primary electron donor for methane formation in ruminants, but the H2-producing organisms involved are largely uncharacterized. This work integrated studies of microbial physiology and genomics to characterize rumen bacterial isolate NK3A20 of the family Lachnospiraceae. Isolate NK3A20 was the first recognized isolate of the NK3A20 group, which is among the ten most abundant bacterial genera in 16S rRNA gene surveys of rumen microbiota. NK3A20 produced acetate, butyrate, H2, and formate from glucose. The end product ratios varied when grown with different substrates and at different H2 partial pressures. NK3A20 produced butyrate as a major product using glucose or under high H2 partial pressures and switched to mainly acetate in the presence of galacturonic acid (an oxidized sugar) or in coculture with a methanogen. Growth with galacturonic acid was faster at elevated H2 concentrations, while elevated H2 slowed growth with glucose. Genome analyses revealed the presence of multiple hydrogenases including a membrane-bound Ech hydrogenase, an electron bifurcating butyryl-CoA dehydrogenase (Bcd-Etf), and an Rnf complex that may be involved in modulating the observed metabolic pathway changes, providing insight into H2 formation in the rumen. IMPORTANCE The genus-level NK3A20 group is one of the ten most abundant genera of rumen bacteria. Like most of the rumen bacteria that produce the hydrogen that is converted to methane in the rumen, it is understudied, without any previously characterized isolates. We investigated isolate NK3A20, a cultured member of this genus, and showed that it modulates hydrogen production in response to its growth substrates and the hydrogen concentration in its environment. Low-hydrogen concentrations stimulated hydrogen formation, while high concentrations inhibited its formation and shifted the fermentation to more reduced organic acid products. We found that growth on uronic acids, components of certain plant polymers, resulted in low hydrogen yields compared to glucose, which could aid in the selection of low-methane feeds. A better understanding of the major genera that produce hydrogen in the rumen is part of developing strategies to mitigate biogenic methane emitted by livestock agriculture.


Subject(s)
Euryarchaeota , Rumen , Animals , Rumen/microbiology , Coculture Techniques , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria/genetics , Ruminants , Euryarchaeota/metabolism , Fermentation , Glucose/metabolism , Clostridiales/metabolism , Acetates/metabolism , Butyrates/metabolism , Methane/metabolism , Hydrogen/metabolism
11.
BMC Genomics ; 24(1): 551, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723422

ABSTRACT

BACKGROUND: Producing animal protein while reducing the animal's impact on the environment, e.g., through improved feed efficiency and lowered methane emissions, has gained interest in recent years. Genetic selection is one possible path to reduce the environmental impact of livestock production, but these traits are difficult and expensive to measure on many animals. The rumen microbiome may serve as a proxy for these traits due to its role in feed digestion. Restriction enzyme-reduced representation sequencing (RE-RRS) is a high-throughput and cost-effective approach to rumen metagenome profiling, but the systematic (e.g., sequencing) and biological factors influencing the resulting reference based (RB) and reference free (RF) profiles need to be explored before widespread industry adoption is possible. RESULTS: Metagenome profiles were generated by RE-RRS of 4,479 rumen samples collected from 1,708 sheep, and assigned to eight groups based on diet, age, time off feed, and country (New Zealand or Australia) at the time of sample collection. Systematic effects were found to have minimal influence on metagenome profiles. Diet was a major driver of differences between samples, followed by time off feed, then age of the sheep. The RF approach resulted in more reads being assigned per sample and afforded greater resolution when distinguishing between groups than the RB approach. Normalizing relative abundances within the sampling Cohort abolished structures related to age, diet, and time off feed, allowing a clear signal based on methane emissions to be elucidated. Genus-level abundances of rumen microbes showed low-to-moderate heritability and repeatability and were consistent between diets. CONCLUSIONS: Variation in rumen metagenomic profiles was influenced by diet, age, time off feed and genetics. Not accounting for environmental factors may limit the ability to associate the profile with traits of interest. However, these differences can be accounted for by adjusting for Cohort effects, revealing robust biological signals. The abundances of some genera were consistently heritable and repeatable across different environments, suggesting that metagenomic profiles could be used to predict an individual's future performance, or performance of its offspring, in a range of environments. These results highlight the potential of using rumen metagenomic profiles for selection purposes in a practical, agricultural setting.


Subject(s)
Metagenome , Microbiota , Animals , Sheep/genetics , Rumen , Livestock , Methane
12.
Genet Sel Evol ; 55(1): 53, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491204

ABSTRACT

BACKGROUND: Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emissions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months (FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic variance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits. RESULTS: Incorporating metagenome profiles increased the variance explained and prediction accuracy compared to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emissions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagenome profiles that were restricted to capturing genera from a reference database. We hypothesise that our reference-free approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use in prediction of individual animal performance. CONCLUSIONS: This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generating metagenome profiles on thousands of animals for improved prediction of economically and environmentally important traits. A reference-free approach using a microbial relationship matrix from log10 proportions of each tag normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions using RE-RRS metagenome profiles.


Subject(s)
Metagenome , Methane , Sheep/genetics , Animals , Female , Rumen , Carbon Dioxide , RNA, Ribosomal, 16S/genetics , Phenotype , Diet/veterinary , Animal Feed
13.
Nat Commun ; 14(1): 3798, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365172

ABSTRACT

Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.


Subject(s)
Mycobiome , Animals , Mycobiome/genetics , Phylogeny , Feces/microbiology , Digestive System , Biological Evolution , Mammals
14.
Article in English | MEDLINE | ID: mdl-37170869

ABSTRACT

Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.


Subject(s)
Fatty Acids , Rumen , Animals , Fatty Acids/chemistry , RNA, Ribosomal, 16S/genetics , Phylogeny , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Sequence Analysis, DNA , Gram-Negative Bacteria , Hydrogen
15.
Curr Res Neurobiol ; 4: 100064, 2023.
Article in English | MEDLINE | ID: mdl-36582401

ABSTRACT

Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research.

16.
Front Genet ; 13: 910413, 2022.
Article in English | MEDLINE | ID: mdl-36246641

ABSTRACT

Enteric methane emissions from ruminants account for ∼35% of New Zealand's greenhouse gas emissions. This poses a significant threat to the pastoral sector. Breeding has been shown to successfully lower methane emissions, and genomic prediction for lowered methane emissions has been introduced at the national level. The long-term genetic impacts of including low methane in ruminant breeding programs, however, are unknown. The success of the New Zealand sheep industry is currently heavily reliant on the prolificacy, fecundity and survival of adult ewes. The objective of this study was to determine genetic and phenotypic correlations between adult maternal ewe traits (live weight, body condition score, number of lambs born, litter survival to weaning, pregnancy scanning and fleece weight), faecal and Nematodirus egg counts and measures of methane in respiration chambers. More than 9,000 records for methane from over 2,200 sheep measured in respiration chambers were collected over 10 years. Sheep were fed on a restricted diet calculated as approximately twice the maintenance. Methane measures were converted to absolute daily emissions of methane measured in g per day (CH4/day). Two measures of methane yield were recorded: the ratio of CH4 to dry matter intake (g CH4/kg DMI; CH4/DMI) and the ratio of CH4 to total gas emissions (CH4/(CH4 + CO2)). Ewes were maintained in the flocks for at least two parities. Non-methane trait data from over 8,000 female relatives were collated to estimate genetic correlations. Results suggest that breeding for low CH4/DMI is unlikely to negatively affect faecal egg counts, adult ewe fertility and litter survival traits, with no evidence for significant genetic correlations. Fleece weight was unfavourably (favourably) correlated with CH4/DMI (rg = -0.21 ± 0.09). Live weight (rg = 0.3 ± 0.1) and body condition score (rg = 0.2 ± 0.1) were positively correlated with methane yield. Comparing the two estimates of methane yield, CH4/DMI had lower heritability and repeatability. However, correlations of both measures with adult ewe traits were similar. This suggests that breeding is a suitable mitigation strategy for lowering methane yield, but wool, live weight and fat deposition traits may be affected over time and should be monitored.

17.
J Neural Eng ; 19(6)2022 12 19.
Article in English | MEDLINE | ID: mdl-36215972

ABSTRACT

Objective.Basic, translational and clinical neuroscience are increasingly focusing on large-scale invasive recordings of neuronal activity. However, in large animals such as nonhuman primates and humans-in which the larger brain size with sulci and gyri imposes additional challenges compared to rodents, there is a huge unmet need to record from hundreds of neurons simultaneously anywhere in the brain for long periods of time. Here, we tested the electrical and mechanical properties of thin, flexible multi-electrode arrays (MEAs) inserted into the primary visual cortex of two macaque monkeys, and assessed their magnetic resonance imaging (MRI) compatibility and their capacity to record extracellular activity over a period of 1 year.Approach.To allow insertion of the floating arrays into the visual cortex, the 20 by 100µm2shafts were temporarily strengthened by means of a resorbable poly(lactic-co-glycolic acid) coating.Main results. After manual insertion of the arrays, theex vivoandin vivoMRI compatibility of the arrays proved to be excellent. We recorded clear single-unit activity from up to 50% of the electrodes, and multi-unit activity (MUA) on 60%-100% of the electrodes, which allowed detailed measurements of the receptive fields and the orientation selectivity of the neurons. Even 1 year after insertion, we obtained significant MUA responses on 70%-100% of the electrodes, while the receptive fields remained remarkably stable over the entire recording period.Significance.Thus, the thin and flexible MEAs we tested offer several crucial advantages compared to existing arrays, most notably in terms of brain tissue compliance, scalability, and brain coverage. Future brain-machine interface applications in humans may strongly benefit from this new generation of chronically implanted MEAs.


Subject(s)
Macaca , Primary Visual Cortex , Animals , Humans , Microelectrodes , Electrodes, Implanted , Neurons/physiology
18.
Nat Commun ; 13(1): 6240, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266280

ABSTRACT

Quinella is a genus of iconic rumen bacteria first reported in 1913. There are no cultures of these bacteria, and information on their physiology is scarce and contradictory. Increased abundance of Quinella was previously found in the rumens of some sheep that emit low amounts of methane (CH4) relative to their feed intake, but whether Quinella contributes to low CH4 emissions is not known. Here, we concentrate Quinella cells from sheep rumen contents, extract and sequence DNA, and reconstruct Quinella genomes that are >90% complete with as little as 0.20% contamination. Bioinformatic analyses of the encoded proteins indicate that lactate and propionate formation are major fermentation pathways. The presence of a gene encoding a potential uptake hydrogenase suggests that Quinella might be able to use free hydrogen (H2). None of the inferred metabolic pathways is predicted to produce H2, a major precursor of CH4, which is consistent with the lower CH4 emissions from those sheep with high abundances of this bacterium.


Subject(s)
Propionates , Rumen , Sheep , Animals , Rumen/microbiology , Propionates/metabolism , Bacteria/genetics , Methane/metabolism , Fermentation , Hydrogen/metabolism , Veillonellaceae , Genomics , Lactates/metabolism , Diet/veterinary
19.
Front Genet ; 13: 911639, 2022.
Article in English | MEDLINE | ID: mdl-36051695

ABSTRACT

There is simultaneous interest in improving the feed efficiency of ruminant livestock and reducing methane (CH4) emissions. The relationship (genetic and phenotypic) between feed efficiency (characterized as residual feed intake: RFI) and greenhouse gases [methane (CH4) and carbon dioxide (CO2)] traits in New Zealand (NZ) maternal sheep has not previously been investigated, nor has their relationship with detailed estimates of body composition. To investigate these relationships in NZ maternal sheep, a feed intake facility was established at AgResearch Invermay, Mosgiel, NZ in 2015, comprising automated feeders that record individual feeding events. Individual measures of feed intake, feeding behavior (length and duration of eating events), and gas emissions (estimated using portable accumulation chambers) were generated on 986 growing maternal ewe lambs sourced from three pedigree recorded flocks registered in the Sheep Improvement Limited database (www.sil.co.nz). Additional data were generated from a subset of 591 animals for body composition (estimated using ultrasound and computed tomography scanning). The heritability estimates for RFI, CH4, and CH4/(CH4+CO2) were 0.42 ± 0.09, 0.32 ± 0.08, and 0.29 ± 0.06, respectively. The heritability estimates for the body composition traits were high for carcass lean and fat traits; for example, the heritability for visceral fat (adjusted for body weight) was 0.93 ± 0.19. The relationship between RFI and CH4 emissions was complex, and although less feed eaten will lead to a lowered absolute amount of CH4 emitted, there was a negative phenotypic and genetic correlation between RFI and CH4/(CH4+CO2) of -0.13 ± 0.03 and -0.41 ± 0.15, respectively. There were also genetic correlations, that were different from zero, between both RFI and CH4 traits with body composition including a negative correlation between the proportion of visceral fat in the body and RFI (-0.52 ± 0.16) and a positive correlation between the proportion of lean in the body and CH4 (0.54 ± 0.12). Together the results provide the first accurate estimates of the genetic correlations between RFI, CH4 emissions, and the body composition (lean and fat) in sheep. These correlations will need to be accounted for in genetic improvement programs.

20.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: mdl-36097816

ABSTRACT

Theta-burst transcranial magnetic stimulation (TBS) has become a standard non-invasive technique to induce offline changes in cortical excitability in human volunteers. Yet, TBS suffers from a high variability across subjects. A better knowledge about how TBS affects neural activity in vivo could uncover its mechanisms of action and ultimately allow its mainstream use in basic science and clinical applications. To address this issue, we applied continuous TBS (cTBS, 300 pulses) in awake behaving rhesus monkeys and quantified its after-effects on neuronal activity. Overall, we observed a pronounced, long-lasting, and highly reproducible reduction in neuronal excitability after cTBS in individual parietal neurons, with some neurons also exhibiting periods of hyperexcitability during the recovery phase. These results provide the first experimental evidence of the effects of cTBS on single neurons in awake behaving monkeys, shedding new light on the reasons underlying cTBS variability.


Subject(s)
Cortical Excitability , Gastropoda , Animals , Healthy Volunteers , Humans , Macaca mulatta , Neurons , Transcranial Magnetic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...