Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Lab Invest ; 83(2): 287-98, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12594242

ABSTRACT

Dementia in Alzheimer's disease (AD) is correlated with cell loss that is mediated by apoptosis, mitochondrial (Mt) dysfunction, and possibly necrosis. Previous studies demonstrated increased expression of the nitric oxide synthase 3 (NOS3) gene in degenerating neurons of AD brains. For investigating the role of NOS3 overexpression as a mediator of neuronal loss, human PNET2 central nervous system-derived neuronal cells were infected with recombinant adenovirus vectors that expressed either human NOS3 or green fluorescent protein cDNA under the control of a CMV promoter. NOS3 overexpression resulted in apoptosis accompanied by increased levels of p53, p21/Waf1, Bax, and CD95. In addition, NOS3 overexpression impaired neuronal Mt function as demonstrated by the reduced levels of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and nicotinamide adenine dinucleotide (reduced form)-tetrazolium reductase activities and MitoTracker Red fluorescence. These adverse effects of NOS3 were associated with increased cellular levels of reactive oxygen species and impaired membrane integrity and were not produced in cells that were transfected with a cDNA encoding catalytically inactive NOS3. Importantly, modest elevations in NOS3 expression, achieved by infection with low multiplicities of adenovirus-NOS3 infection, did not cause apoptosis but rendered the cells more sensitive to oxidative injury by H(2)O(2) or diethyldithiocarbamate. In contrast, treatment with NO donors did not enhance neuronal sensitivity to oxidative injury. These results suggest that NOS3-induced neuronal death is mediated by Mt dysfunction, oxidative injury, and impaired membrane integrity, rather than by NO production, and that neuroprotection from these adverse effects of NOS3 may be achieved by modulating intracellular levels of oxidative stress.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Apoptosis , Mitochondria/enzymology , Neurons/enzymology , Neurons/pathology , Nitric Oxide Synthase/metabolism , Alzheimer Disease/etiology , Cells, Cultured , Humans , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase Type III , Oxidative Stress , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...