Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 10(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34359405

ABSTRACT

Yoghurts from cow, goat and sheep milk were produced and stored under defined conditions to monitor the influence of various factors on the benzoic acid content as determined by Ultra High Performance Liquid Chromatography (UHPLC). The highest level of benzoic acid was found in sheep yoghurt (43.26 ± 5.11 mg kg-1) and the lowest in cow yoghurt (13.38 ± 3.56 mg kg-1), with goat yoghurt (21.31 ± 5.66 mg kg-1) falling in between. Benzoic acid content did not show statistically significant variation until the second and third weeks of storage, and the dynamics of this variation varied depending on the type of yoghurt. The yoghurt culture containing different strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus also affected the contents of benzoic acid. Further, the different storage temperatures (2 and 8 °C) as well as the temperatures used to milk heat treatment before yoghurt production (80, 85 and 90 °C) affected the amount of benzoic acid in different types of yoghurts.

2.
Bioresour Technol ; 101(23): 9395-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20659792

ABSTRACT

Stems of amaranthus are considered as prospective biofuel in the Czech Republic. The study presents results of water sorption tests of this biomass in the range of 10-30 degrees C and water activity (a(w)) ranging from 0.4 to 0.99. The experimental procedure used was a gravimetric dynamic method. Four sorption models (Chung-Pfost, Halsey, Henderson, Oswin) were evaluated. The modified Henderson's equation was the best model for moisture adsorption and desorption of amaranthus stems. Critical values of equilibrium moisture content, corresponding to the a(w)=0.6, were 11.45% and 13.28%(wb) for water adsorption and desorption respectively, at the temperature of 20 degrees C. Heat of sorption (q(st)) was calculated using the chosen sorption model and Clausius-Clapeyron equation. An exponential function was found to fit the experimental q(st) values of amaranthus stems at moisture contents ranging from 7% to 40%(wb) for adsorption and desorption.


Subject(s)
Amaranthus/metabolism , Plant Stems/metabolism , Water/metabolism , Adsorption , Models, Biological , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...