Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 500(2): 172-80, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22487870

ABSTRACT

Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of 85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees.


Subject(s)
Arecaceae/genetics , Chloroplasts/genetics , Genome, Chloroplast/genetics , Arecaceae/classification , Base Sequence , DNA, Chloroplast/chemistry , DNA, Chloroplast/genetics , Molecular Sequence Data , Phylogeny , RNA Editing/genetics , RNA, Chloroplast/chemistry , RNA, Chloroplast/genetics , Repetitive Sequences, Nucleic Acid , Sequence Alignment , Sequence Analysis, DNA
2.
Theor Appl Genet ; 108(3): 525-34, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14605807

ABSTRACT

To identify early-induced defense genes involved in broad-spectrum resistance to rice blast, suppression subtractive hybridization was used to generate two cDNA libraries enriched for transcripts differentially expressed in Pi9(t)-resistant and -susceptible plants. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced and analyzed. Forty-seven unique cDNA clones were found and assigned to eight different groups according to the putative function of their homologous genes in the database. These genes may be involved in pathogen or stress response, signal transduction, transcription, cell transport, metabolism, energy or protein destination. Northern blot analysis showed that most of these genes were induced or suppressed after blast infection, and that half of them showed differential expression patterns between compatible and incompatible interactions. Interestingly, all but one of the identified genes are reported here for the first time to be involved in defense response to rice blast. In addition, hybridization of these clones with cDNAs synthesized from RNA samples from bacterial blight-infected leaves showed that few of them are induced or repressed in Xa21- or Xa7-resistant plants, suggesting a minimum overlap of defense responses mediated by different resistance genes to fungal and bacterial pathogens at an early stage of infection. Further characterization and functional analysis of these genes will enhance our understanding of the molecular mechanism of broad-spectrum resistance in rice.


Subject(s)
Immunity, Innate/genetics , Magnaporthe , Oryza/genetics , Plant Diseases/microbiology , Base Sequence , Blotting, Northern , DNA Primers , Gene Expression , Gene Library , Molecular Sequence Data , Oryza/microbiology , Sequence Analysis, DNA
3.
Theor Appl Genet ; 108(2): 261-73, 2004 Jan.
Article in English | MEDLINE | ID: mdl-13679977

ABSTRACT

Recombinant inbred lines of the International Triticeae Mapping Initiative (ITMI) mapping population were used to localize genetic loci that affect traits related to the free-threshing habit (percent threshability, glume tenacity, and spike fragility) and to spike morphology (spike length, spikelet number, and spike compactness) of wheat ( Triticum aestivum L.). The ITMI population was planted in three environments during 1999 and 2000, and phenotypic and genotypic data were used for composite interval mapping. Two quantitative trait loci (QTL) that consistently affected threshability-associated traits were localized on chromosomes 2D and 5A. Coincident QTL on the short arm of 2D explained 44% of the variation in threshability, 17% of the variation in glume tenacity, and 42% of the variation in rachis fragility. QTL on chromosomes 2D probably represent the effect of Tg, a gene for tenacious glumes. Coincident QTL on the long arm of 5A explained 21% and 10% of the variation in glume tenacity and rachis fragility, respectively. QTL on 5A are believed to represent the effect of Q. Overall, free-threshing-related characteristics were predominantly affected by Tg and to a lesser extent by Q. Other QTL that were significantly associated with threshability-related traits in at least one environment were localized on chromosomes 2A, 2B, 6A, 6D, and 7B. Four QTL on chromosomes 1B, 4A, 6A, and 7A consistently affected spike characteristics. Coincident QTL on the short arm of chromosome 1B explained 18% and 7% of the variation in spike length and spike compactness, respectively. QTL on the long arm of 4A explained 11%, 14%, and 12% of the variation in spike length, spike compactness, and spikelet number, respectively. A QTL on the short arm of 6A explained 27% of the phenotypic variance for spike compactness, while a QTL on the long arm of 7A explained 18% of the variation in spikelet number. QTL on chromosomes 1B and 6A appear to affect spike dimensions by modulating rachis internode length, while QTL on chromosomes 4A and 7A do so by affecting the formation of spikelets. Other QTL that were significantly associated with spike morphology-related traits, in at least one environment, were localized on chromosomes 2B, 3A, 3D, 4D, and 5A.


Subject(s)
Quantitative Trait, Heritable , Triticum/growth & development , Triticum/genetics , Chromosome Mapping , Crosses, Genetic , DNA, Plant/genetics , Genetic Markers , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...