Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(21): 32165-32172, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115179

ABSTRACT

In this paper we present the first example of waveguides fabricated by UV writing in non-hydrogen loaded Ge-doped planar silica with 213 nm light. Single mode waveguides were fabricated and the numerical apertures and mode field diameters were measured for a range of writing fluences. A peak index change of 5.3 x 10-3 was inferred for the waveguide written with 70 kJ cm-2. The refractive index change is sufficient to match the index structure of standard optical fiber. Uniformity of the written structures was measured and a propagation loss of 0.39 ± 0.03 dB cm-1 was determined through cutback measurements.

2.
Opt Express ; 28(14): 21300-21309, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680174

ABSTRACT

We have demonstrated the inscription of Bragg gratings into five individual cores of a seven core fiber using small spot direct UV writing. With this technique, we defined spectrally multiplexed Bragg gratings consecutively in separate cores as well as spectrally multiplexed gratings at the same longitudinal location in different cores. The effect of bending on the optical spectrum was evaluated to allow the differentiation between cross-exposure and cross-talk, and an alignment process to reduce cross-exposure by 13 dB was found.

3.
Opt Lett ; 44(3): 703-706, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30702715

ABSTRACT

We demonstrate thermal classification of sequentially written fiber Bragg gratings. This Letter presents a process to determine the type of fiber Bragg grating written in SMF28 and GF4A by introducing the gratings to thermal treatment. This technique can be applied to several approaches based on sequential writing, including the small spot direct ultraviolet writing technique. Four different types of gratings have been identified, which are dependent on the fiber type and fluence used during the writing process.

4.
Opt Express ; 26(7): 9155-9164, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715871

ABSTRACT

A route to monitor external refractive indices greater than the core index of the waveguide is presented. Initial application utilizes an integrated optical fibre (IOF) platform due to its potential for use in harsh environment sensing. IOF is fabricated using a bespoke flame hydrolysis deposition process to fuse an optical fibre to a planar substrate achieving an optical quality, ruggedized glass layer between the fibre and substrate was fabricated. The presented refractometer is created by direct UV writing of multiple fibre Bragg gratings into an etched (22 µm diameter) optical fibre post fabrication. Linear regression analysis is applied to quantify propagation loss by monitoring each FBG's back reflected power. The device operates with a sensitivity of approximately 350 dB/cm/RIU at a refractive index of 1.451 at 1550 nm. Numerical simulations using a transfer matrix method are presented and potential routes for development are discussed.

5.
Opt Lett ; 43(4): 791-794, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29443995

ABSTRACT

This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 µm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

6.
Opt Lett ; 42(19): 3741-3744, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28957116

ABSTRACT

In this Letter, experimental evidence is provided for an enhanced thermal sensitivity for a double thermal regeneration feature in fiber Bragg gratings fabricated by direct ultraviolet (UV) writing. Here 47 gratings of varying fluence and wavelength were written along a double-clad, germanium-doped core fiber. Subsequently thermal processing without hydrogen loading the fiber was performed and thermal treatment was carried out in a pure oxygen environment. Thermal sensitivity for the double regeneration increased from 13.6±0.3 pm/°C to 21.3±0.2 pm/°C. Furthermore, one of the highest nominal fluence gratings, #45, exhibited a regeneration factor of 1.73.

7.
Opt Express ; 24(8): 8391-8, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27137276

ABSTRACT

An external cavity diode laser is demonstrated using a Bragg grating written into a novel integrated optical fiber platform as the external cavity. The cavity is fabricated using flame-hydrolysis deposition to bond a photosensitive fiber to a silica-on-silicon wafer, and a grating written using direct UV-writing. The laser operates on a single mode at the acetylene P13 line (1532.83 nm) with 9 mW output power. The noise properties of the laser are characterized demonstrating low linewidth operation (< 14 kHz) and superior relative intensity noise characteristics when compared to a commercial tunable external cavity diode laser.

SELECTION OF CITATIONS
SEARCH DETAIL
...