Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 70(19): 7520-9, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16149779

ABSTRACT

[reaction: see text] The solution and chelation properties of 2-thienyllithium reagents with potential amine and ether chelating groups in the 3-position and related model systems have been investigated using low temperature 6Li, 7Li, 13C, and 31P NMR spectroscopy, 15N-labeling, and the effect of solvent additives. In THF-ether mixtures at low temperature 3-(N,N-dimethylaminomethyl)-2-thienyllithium (4) is ca. 99% dimer (which is chelated) and 1% monomer (unchelated), whereas 3-(methoxymethyl)-2-thienyllithium (5) is <10% dimer. Compound 5 crystallizes as a THF-solvated dimer, but there is no indication that the ether side chain is chelated in solution. Both 4 and 5 form PMDTA-complexed monomers almost stoichiometrically, similar to the model compound 2, in sharp contrast to phenyl analogues, which show very different behavior. The barriers to dimer interconversion are ca. 2 kcal/mol lower and chelation is significantly weaker in the 2-thienyllithium reagents than in their phenyl analogues.

2.
J Am Chem Soc ; 125(12): 3509-21, 2003 Mar 26.
Article in English | MEDLINE | ID: mdl-12643713

ABSTRACT

Chelation and aggregation in phenyllithium reagents with potential 6- and 7-ring chelating amine (2, 3) and 5-, 6-, and 7-ring chelating ether (4, 5, 6) ortho substituents have been examined utilizing variable temperature (6)Li and (13)C NMR spectroscopy, (6)Li and (15)N isotope labeling, and the effects of solvent additives. The 5- and 6-ring ether chelates (4, 5) compete well with THF, but the 6-ring amine chelate (2) barely does, and 7-ring amine chelate (3) does not. Compared to model compounds (e.g., 2-ethylphenyllithium 7), which are largely monomeric in THF, the chelated compounds all show enhanced dimerization (as measured by K = [D]/[M](2)) by factors ranging from 40 (for 6) to more than 200 000 (for 4 and 5). Chelation isomers are seen for the dimers of 5 and 6, but a chelate structure could be assigned only for 2-(2-dimethylaminoethyl)phenyllithium (2), which has an A-type structure (both amino groups chelated to the same lithium in the dimer) based on NMR coupling in the (15)N, (6)Li labeled compound. Unlike the dimer, the monomer of 2 is not detectably chelated. With the exception of 2-(methoxymethyl)phenyllithium (4), which forms an open dimer (12) and a pentacoordinate monomer (13), the lithium reagents all form monomeric nonchelated adducts with PMDTA.

SELECTION OF CITATIONS
SEARCH DETAIL
...