Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 340: 118025, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37141656

ABSTRACT

The Birds and Habitats Directive are the cornerstones of Europe's nature conservation policy and the resulting Natura 2000 (N2k) sites form the largest coordinated network of protected areas in the world. Despite the ambitious targets of these directives and decades of efforts, biodiversity, especially of freshwater-related species, continues to decline in Europe. While multiple stressors at larger spatial scales are known to limit the effect of river restoration projects, the importance of surrounding land use outside the N2k sites for freshwater-related species richness inside N2k sites has rarely been studied. Conditional inference forests were used to assess the importance of land use in the surrounding and upstream of the German N2k sites compared to local habitat conditions inside. Freshwater-related species richness depended on land use in the surrounding besides local habitat conditions. Results indicated that this was especially true for birds in small N2k sites embedded in a wet, diverse, and patchy landscape and for non-birds due to the provision of additional habitats outside the N2k sites. Given that most N2k sites in Europe are rather small, the surrounding habitat conditions and land use potentially influences and affects freshwater-related species in many N2k sites across Europe. The additional conservation and restoration areas to be designated under the EU Biodiversity Strategy and upcoming EU restoration law should either be large enough or surrounded by extensive land use to optimize their effect on freshwater-related species.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Biodiversity , Europe , Fresh Water
2.
Sci Rep ; 11(1): 17468, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471149

ABSTRACT

While much of global biodiversity is undoubtedly under threat, the responses of ecological communities to changing climate, land use intensification, and long-term changes in both taxonomic and functional diversity over time, has still not been fully explored for many taxonomic groups, especially invertebrates. We compiled time series of ground beetles covering the past two decades from 40 sites located in five regions across Germany. We calculated site-based trends for 21 community metrics representing taxonomic and functional diversity of ground beetles, activity density (a proxy for abundance), and activity densities of functional groups. We assessed both overall and regional temporal trends and the influence of the global change drivers of temperature, precipitation, and land use on ground beetle communities. While we did not detect overall temporal changes in ground beetle taxonomic and functional diversity, taxonomic turnover changed within two regions, illustrating that community change at the local scale does not always correspond to patterns at broader spatial scales. Additionally, ground beetle activity density had a unimodal response to both annual precipitation and land use. Limited temporal change in ground beetle communities may indicate a shifting baseline, where community degradation was reached prior to the start of our observation in 1999. In addition, nonlinear responses of animal communities to environmental change present a challenge when quantifying temporal trends.


Subject(s)
Agriculture , Biodiversity , Climate Change , Coleoptera/physiology , Ecosystem , Environmental Monitoring , Animals , Temperature
3.
Conserv Biol ; 33(1): 132-141, 2019 02.
Article in English | MEDLINE | ID: mdl-29947087

ABSTRACT

Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10-164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15-120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.


Subject(s)
Conservation of Natural Resources , Rivers , Animals , Ecosystem , Fishes , Germany
4.
Sci Total Environ ; 613-614: 1185-1195, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28954379

ABSTRACT

Hydromorphological restructuring of river sections, i.e. river restoration measures, often has little effects on aquatic biota, even in case of strong habitat alterations. It is often supposed that the biotic response is simply delayed as species require additional time to recolonize the newly generated habitats and to establish populations. To identify and specify the supposed lag time between restoration and biotic response, we investigated 19 restored river reaches twice in a five-year interval. The sites were restored one to ten years prior to the first sampling. We sampled three aquatic (fish, benthic invertebrates, macrophytes) and two riparian organism groups (ground beetles and riparian vegetation) and analyzed changes in assemblage composition and biotic metrics. With the exception of ground beetle assemblages, we observed no significant changes in richness and abundance metrics or metrics used for biological assessment. However, indicator taxa for near-natural habitat conditions in the riparian zone (indicators for regular inundation in plants and river bank specialists in beetles) improved significantly in the five-year interval. Contrary to general expectations in river restoration planning, we neither observed a distinct succession of aquatic communities nor a general trend towards "good ecological status" over time. Furthermore, multiple linear regression models revealed that neither the time since restoration nor the morphological status had a significant effect on the biological metrics and the assessment results. Thus, the stability of aquatic assemblages is strong, slowing down restoration effects in the aquatic zone, while riparian assemblages improve more rapidly. When defining restoration targets, the different timelines for ecological recovery after restoration should be taken into account. Furthermore, restoration measures should not solely focus on local habitat conditions but also target stressors acting on larger spatial scales and take other measures (e.g. species reintroduction) into consideration.

SELECTION OF CITATIONS
SEARCH DETAIL
...