Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Math Methods Med ; 2020: 8573754, 2020.
Article in English | MEDLINE | ID: mdl-32273902

ABSTRACT

In recent years, asynchronous brain computer interface (BCI) systems have been utilized in many domains such as robot controlling, assistive technology, and rehabilitation. In such BCI systems, movement intention detection algorithms are used to detect movement desires. In recent years, movement-related cortical potential (MRCP), an electroencephalogram (EEG) pattern representing voluntary movement intention, attracts wide attention in movement intention detection. Unfortunately, low MRCP detection accuracy makes the asynchronous BCI system impractical for real usage. In order to develop an effective MRCP detection algorithm, EEG data have to be properly preprocessed. In this work, we investigate the relationship and effects of three factors including frequency bands, spatial filters, and classifiers on MRCP classification performance to determine best settings. In particular, we performed a systematic performance investigation on combinations of five frequency bands, five spatial filters, and six classifiers. The EEG data were acquired from subjects performing series of self-paced ankle dorsiflexions. Analysis of variance (ANOVA) statistical test was performed on F1 scores to investigate effects of these three factors. The results show that frequency bands and spatial filters depend on each other. The combinations directly affect the F1 scores, so they have to be chosen carefully. The results can be used as guidelines for BCI researchers to effectively design a preprocessing method for an advanced asynchronous BCI system, which can assist the stroke rehabilitation.


Subject(s)
Brain-Computer Interfaces/statistics & numerical data , Intention , Movement , Adult , Algorithms , Computational Biology , Electroencephalography/statistics & numerical data , Evoked Potentials , Female , Humans , Linear Models , Male , Movement/physiology , Pattern Recognition, Automated/statistics & numerical data , Principal Component Analysis , Signal Processing, Computer-Assisted , Stroke Rehabilitation/methods , Stroke Rehabilitation/statistics & numerical data , Support Vector Machine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...