Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
New Phytol ; 239(2): 739-751, 2023 07.
Article in English | MEDLINE | ID: mdl-37229659

ABSTRACT

Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.


Subject(s)
Fagus , Mycorrhizae , Fagus/microbiology , Forests , Trees/microbiology , Nitrogen , Plant Roots
2.
Plant J ; 111(1): 282-303, 2022 07.
Article in English | MEDLINE | ID: mdl-35535561

ABSTRACT

Xylem sap is the major transport route for nutrients from roots to shoots. In the present study, we investigated how variations in nitrogen (N) nutrition affected the metabolome and proteome of xylem sap and the growth of the xylem endophyte Brennaria salicis, and we also report transcriptional re-wiring of leaf defenses in poplar (Populus × canescens). We supplied poplars with high, intermediate or low concentrations of ammonium or nitrate. We identified 288 unique proteins in xylem sap. Approximately 85% of the xylem sap proteins were shared among ammonium- and nitrate-supplied plants. The number of proteins increased with increasing N supply but the major functional categories (catabolic processes, cell wall-related enzymes, defense) were unaffected. Ammonium nutrition caused higher abundances of amino acids and carbohydrates, whereas nitrate caused higher malate levels in xylem sap. Pipecolic acid and N-hydroxy-pipecolic acid increased, whereas salicylic acid and jasmonoyl-isoleucine decreased, with increasing N nutrition. Untargeted metabolome analyses revealed 2179 features in xylem sap, of which 863 were differentially affected by N treatments. We identified 124 metabolites, mainly from specialized metabolism of the groups of salicinoids, phenylpropanoids, phenolics, flavonoids, and benzoates. Their abundances increased with decreasing N, except coumarins. Brennaria salicis growth was reduced in nutrient-supplemented xylem sap of low- and high- NO3- -fed plants compared to that of NH4+ -fed plants. The drastic changes in xylem sap composition caused massive changes in the transcriptional landscape of leaves and recruited defenses related to systemic acquired and induced systemic resistance. Our study uncovers unexpected complexity and variability of xylem composition with consequences for plant defenses.


Subject(s)
Ammonium Compounds , Populus , Ammonium Compounds/metabolism , Nitrates/metabolism , Pipecolic Acids/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Populus/metabolism , Xylem/metabolism
3.
mSystems ; 7(1): e0095721, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35089084

ABSTRACT

Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.


Subject(s)
Ammonium Compounds , Mycorrhizae , Mycorrhizae/genetics , Plant Roots/metabolism , Nitrates/metabolism , Soil , Forests , Trees/metabolism , Plants , Ammonium Compounds/metabolism
4.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576062

ABSTRACT

Drought is a severe environmental stress that exerts negative effects on plant growth. In trees, drought leads to reduced secondary growth and altered wood anatomy. The mechanisms underlying wood stress adaptation are not well understood. Here, we investigated the physiological, anatomical, hormonal, and transcriptional responses of poplar to strong drought. Drought-stressed xylem was characterized by higher vessel frequencies, smaller vessel lumina, and thicker secondary fiber cell walls. These changes were accompanied by strong increases in abscisic acid (ABA) and antagonistic changes in salicylic acid in wood. Transcriptional evidence supported ABA biosynthesis and signaling in wood. Since ABA signaling activates the fiber-thickening factor NST1, we expected upregulation of the secondary cell wall (SCW) cascade under stress. By contrast, transcription factors and biosynthesis genes for SCW formation were down-regulated, whereas a small set of cellulose synthase-like genes and a huge array of genes involved in cell wall modification were up-regulated in drought-stressed wood. Therefore, we suggest that ABA signaling monitors normal SCW biosynthesis and that drought causes a switch from normal to "stress wood" formation recruiting a dedicated set of genes for cell wall biosynthesis and remodeling. This proposition implies that drought-induced changes in cell wall properties underlie regulatory mechanisms distinct from those of normal wood.


Subject(s)
Plant Growth Regulators/genetics , Populus/genetics , Transcription, Genetic , Wood/genetics , Cell Wall/genetics , Droughts , Gene Expression Regulation, Plant/genetics , Populus/growth & development , Stress, Physiological/genetics , Transcriptional Activation/genetics , Wood/growth & development , Xylem/genetics , Xylem/growth & development
5.
Tree Physiol ; 41(5): 865-881, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33147604

ABSTRACT

Cultivation of fast-growing tree species is often confined to marginal land. Mixed cropping with Robinia pseudoacacia, a legume tree species that forms a symbiosis with N2-fixing bacteria, has been proposed to be a measure to improve soil fertility and to achieve beneficial effects on the cocultivated tree species. The goal of our study was to examine the influence of a Robinia mixture on wood chemistry, anatomy and gene expression in poplar. We hypothesized that annual wood growth is stimulated in species mixtures due to the positive effects of Robinia on nitrogen availability and complementary resource use. Alternatively, we hypothesized that competition, especially for water, has negative effects on the wood growth of poplar. We used two commercial biomass clones, Hybride 275 (H275, Populus trichocarpa × Populus maximowiczii) and Max1 (Populus nigra × P. maximowiczii), which were planted at two locations with contrasting soil fertility in monoculture or mixed plots with Robinia to investigate the annual wood increment, wood nitrogen and δ13C, wood anatomy (length, cell wall thickness, lumina and frequencies of fibers and vessels) and transcriptional profiles in the developing xylem of 4-year-old stems. In a mixture with Robinia, the annual stem increment was reduced, nitrogen in wood was enhanced, δ13C in wood was decreased, vessel and fiber frequencies were increased and fiber lengths and fiber lumina were decreased. Transcriptional profiles showed stronger differences between the genotypes and sites than between mono and mixed cultivation. The transcriptional abundances of only one gene (the putative nitrate transporter, NRT1.2) and one gene ontology term ('immune system process') were significantly enriched in wood-forming tissues in response to the mixture, irrespective of the poplar genotype and growth location. Weighted gene coexpression network analyses extracted gene modules that linked wood nitrogen mainly to vessel traits and wood δ13C with fiber traits. Collectively, molecular and anatomical changes in poplar wood suggest beneficial effects on the water and N supply in response to the mixture with Robinia. These alterations may render poplars less drought-susceptible. However, these benefits are accompanied by a reduced wood increment, emphasizing that other critical factors, presumably light competition or allelopathic effects, overrule a potential growth stimulation.


Subject(s)
Populus , Robinia , Nitrogen , Populus/genetics , Robinia/genetics , Wood , Xylem/genetics
6.
New Phytol ; 228(2): 728-740, 2020 10.
Article in English | MEDLINE | ID: mdl-32473606

ABSTRACT

Below-ground microbes can induce systemic resistance against foliar pests and pathogens on diverse plant hosts. The prevalence of induced systemic resistance (ISR) among plant-microbe-pest systems raises the question of host specificity in microbial induction of ISR. To test whether ISR is limited by plant host range, we tested the ISR-inducing ectomycorrhizal fungus Laccaria bicolor on the nonmycorrhizal plant Arabidopsis thaliana. We used the cabbage looper Trichoplusia ni and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) as readouts for ISR on Arabidopsis. We found that root inoculation with L. bicolor triggered ISR against T. ni and induced systemic susceptibility (ISS) against the bacterial pathogen Pto. We found that L. bicolor-triggered ISR against T. ni was dependent on jasmonic acid signaling and salicylic acid biosynthesis and signaling. Heat-killed L. bicolor and chitin were sufficient to trigger ISR against T. ni and ISS against Pto. The chitin receptor CERK1 was necessary for L. bicolor-mediated effects on systemic immunity. Collectively our findings suggest that some ISR responses might not require intimate symbiotic association, but rather might be the result of root perception of conserved microbial signals.


Subject(s)
Arabidopsis , Mycorrhizae , Animals , Gene Expression Regulation, Plant , Insecta , Laccaria , Plant Diseases , Pseudomonas syringae
7.
Environ Microbiol ; 22(8): 3081-3095, 2020 08.
Article in English | MEDLINE | ID: mdl-32383336

ABSTRACT

Root-associated fungi (RAF) link nutrient fluxes between soil and roots and thus play important roles in ecosystem functioning. To enhance our understanding of the factors that control RAF, we fitted statistical models to explain variation in RAF community structure using data from 150 temperate forest sites covering a broad range of environmental conditions and chemical root traits. We found that variation in RAF communities was related to both root traits (e.g., cations, carbohydrates, NO3 - ) and soil properties (pH, cations, moisture, C/N). The identified drivers were the combined result of distinct response patterns of fungal taxa (determined at the rank of orders) to biotic and abiotic factors. Our results support that RAF community variation is related to evolutionary adaptedness of fungal lineages and consequently, drivers of RAF communities are context-dependent.


Subject(s)
Fungi/metabolism , Mycobiome/physiology , Plant Roots/microbiology , Trees/microbiology , Ecosystem , Forests , Fungi/classification , Geography , Nutrients , Soil/chemistry , Soil Microbiology
8.
Plant Physiol ; 176(4): 2639-2656, 2018 04.
Article in English | MEDLINE | ID: mdl-29439210

ABSTRACT

Symbioses between plants and mycorrhizal fungi are ubiquitous in ecosystems and strengthen the plants' defense against aboveground herbivores. Here, we studied the underlying regulatory networks and biochemical mechanisms in leaves induced by ectomycorrhizae that modify herbivore interactions. Feeding damage and oviposition by the widespread poplar leaf beetle Chrysomela populi were reduced on the ectomycorrhizal hybrid poplar Populus × canescens Integration of transcriptomics, metabolomics, and volatile emission patterns via mass difference networks demonstrated changes in nitrogen allocation in the leaves of mycorrhizal poplars, down-regulation of phenolic pathways, and up-regulation of defensive systems, including protease inhibitors, chitinases, and aldoxime biosynthesis. Ectomycorrhizae had a systemic influence on jasmonate-related signaling transcripts. Our results suggest that ectomycorrhizae prime wounding responses and shift resources from constitutive phenol-based to specialized protective compounds. Consequently, symbiosis with ectomycorrhizal fungi enabled poplars to respond to leaf beetle feeding with a more effective arsenal of defense mechanisms compared with nonmycorrhizal poplars, thus demonstrating the importance of belowground plant-microbe associations in mitigating aboveground biotic stress.


Subject(s)
Metabolomics , Populus/genetics , Populus/metabolism , Transcriptome , Animals , Coleoptera/physiology , Disease Resistance/genetics , Feeding Behavior , Herbivory , Hybrid Vigor/genetics , Hybridization, Genetic , Mycorrhizae/physiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/parasitology , Populus/parasitology , Symbiosis
9.
AoB Plants ; 10(1): plx067, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29354257

ABSTRACT

Climate change with increasing periods of drought is expected to reduce the yield of biomass crops such as poplars. To combat yield loss, it is important to better understand the molecular mechanisms that control growth under drought. Here, the goal was to resolve the drought-induced changes of active cytokinins, a main growth hormone in plants, at the tissue level in different cell types and organs of poplars (Populus × canescens) in comparison with growth, biomass, leaf shedding, photosynthesis and water potential. Since cytokinin response is mediated by type-A response regulators, ARR5::GUS reporter lines were used to map cytokinin activity histochemically. The expression of PtaRR3 and PtaRR10 was examined in different stem sections. Young leaves showed strong cytokinin activity in the veins and low staining under drought stress, accompanied by diminished leaf expansion. Leaf scars, at positions where drought-shedding occurred, showed strong reduction of cytokinin activity. The pith in the differentiation zone of stem showed high cytokinin activity with distinct, very active parenchymatic cells and enhanced activity close to primary xylem. This pattern was maintained under drought but the cytokinin activity was reduced. Mature phloem parenchymatic cells showed high cytokinin activity and mature wood showed no detectable cytokinin activity. Cytokinin activity in the cambium was apparent as a clear ring, which faded under drought. Xylem-localized cytokinin activities were also mirrored by the relative expression of PtaRR3, whereas PtaRR10 showed developmental but no drought-induced changes. Primary meristems exhibited high cytokinin activity regardless of drought stress, supporting a function of this phytohormone in meristem maintenance, whereas declining cytokinin activities in apical pith tissues and cambium of drought-stressed poplars linked cytokinin in these cell types with the control of primary and secondary growth processes. Changes in cytokinin activity further imply a role in drought avoidance mechanisms of poplars, especially in the reduction of leaf area.

10.
Tree Physiol ; 38(3): 320-339, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28541580

ABSTRACT

Wood is a renewable resource that can be employed for the production of second generation biofuels by enzymatic saccharification and subsequent fermentation. Knowledge on how the saccharification potential is affected by genotype-related variation of wood traits and drought is scarce. Here, we used three Populus nigra L. genotypes from habitats differing in water availability to (i) investigate the relationships between wood anatomy, lignin content and saccharification and (ii) identify genes and co-expressed gene clusters related to genotype and drought-induced variation in wood traits and saccharification potential. The three poplar genotypes differed in wood anatomy, lignin content and saccharification potential. Drought resulted in reduced cambial activity, decreased vessel and fiber lumina, and increased the saccharification potential. The saccharification potential was unrelated to lignin content as well as to most wood anatomical traits. RNA sequencing of the developing xylem revealed that 1.5% of the analyzed genes were differentially expressed in response to drought, while 67% differed among the genotypes. Weighted gene correlation network analysis identified modules of co-expressed genes correlated with saccharification potential. These modules were enriched in gene ontology terms related to cell wall polysaccharide biosynthesis and modification and vesicle transport, but not to lignin biosynthesis. Among the most strongly saccharification-correlated genes, those with regulatory functions, especially kinases, were prominent. We further identified transcription factors whose transcript abundances differed among genotypes, and which were co-regulated with genes for biosynthesis and modifications of hemicelluloses and pectin. Overall, our study suggests that the regulation of pectin and hemicellulose metabolism is a promising target for improving wood quality of second generation bioenergy crops. The causal relationship of the identified genes and pathways with saccharification potential needs to be validated in further experiments.


Subject(s)
Droughts , Genotype , Populus/anatomy & histology , Populus/genetics , Wood/anatomy & histology , Wood/metabolism , Gene Expression , Genes, Plant , Hydrolysis , Lignin/metabolism , Multigene Family , Polysaccharides/metabolism , Populus/metabolism
11.
Front Plant Sci ; 7: 652, 2016.
Article in English | MEDLINE | ID: mdl-27242853

ABSTRACT

Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but also in winter. The presence of the signal in meristematic tissues supports their role in meristem maintenance. The reporter lines will be useful to study the involvement of cytokinins in acclimation of poplar growth to stress.

12.
BMC Plant Biol ; 14: 391, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25547614

ABSTRACT

BACKGROUND: Nitrogen is an important nutrient, often limiting plant productivity and yield. In poplars, woody crops used as feedstock for renewable resources and bioenergy, nitrogen fertilization accelerates growth of the young, expanding stem internodes. The underlying molecular mechanisms of nitrogen use for extension growth in poplars are not well understood. The aim of this study was to dissect the nitrogen-responsive transcriptional network in the elongation zone of Populus trichocarpa in relation to extension growth and cell wall properties. RESULTS: Transcriptome analyses in the first two internodes of P. trichocarpa stems grown without or with nitrogen fertilization (5 mM NH4NO3) revealed 1037 more than 2-fold differentially expressed genes (DEGs). Co-expression analysis extracted a network containing about one-third of the DEGs with three main complexes of strongly clustered genes. These complexes represented three main processes that were responsive to N-driven growth: Complex 1 integrated growth processes and stress suggesting that genes with established functions in abiotic and biotic stress are also recruited to coordinate growth. Complex 2 was enriched in genes with decreased transcript abundance and functionally annotated as photosynthetic hub. Complex 3 was a hub for secondary cell wall formation connecting well-known transcription factors that control secondary cell walls with genes for the formation of cellulose, hemicelluloses, and lignin. Anatomical and biochemical analysis supported that N-driven growth resulted in early secondary cell wall formation in the elongation zone with thicker cell walls and increased lignin. These alterations contrasted the N influence on the secondary xylem, where thinner cell walls with lower lignin contents than in unfertilized trees were formed. CONCLUSION: This study uncovered that nitrogen-responsive elongation growth of poplar internodes is linked with abiotic stress, suppression of photosynthetic genes and stimulation of genes for cell wall formation. Anatomical and biochemical analysis supported increased accumulation of cell walls and secondary metabolites in the elongation zone. The finding of a nitrogen-responsive cell wall hub may have wider implications for the improvement of tree nitrogen use efficiency and opens new perspectives on the enhancement of wood composition as a feedstock for biofuels.


Subject(s)
Fertilizers , Gene Expression Regulation, Plant , Nitrogen/metabolism , Populus/growth & development , Populus/genetics , Transcriptome , Cell Wall/drug effects , Cell Wall/metabolism , Fertilizers/analysis , Gene Regulatory Networks , Lignin/metabolism , Multigene Family , Phenols/metabolism , Photosynthesis/drug effects , Populus/metabolism , Stress, Physiological/drug effects
13.
Materials (Basel) ; 7(4): 3160-3175, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-28788612

ABSTRACT

Energy-dispersive X-ray microanalysis (EDX) is a technique for determining the distribution of elements in various materials. Here, we report a protocol for high-spatial-resolution X-ray elemental imaging and quantification in plant tissues at subcellular levels with a scanning transmission electron microscope (STEM). Calibration standards were established by producing agar blocks loaded with increasing KCl or NaCl concentrations. TEM-EDX images showed that the salts were evenly distributed in the agar matrix, but tended to aggregate at high concentrations. The mean intensities of K⁺, Cl-, and Na⁺ derived from elemental images were linearly correlated to the concentrations of these elements in the agar, over the entire concentration range tested (R > 0.916). We applied this method to plant root tissues. X-ray images were acquired at an actual resolution of 50 nm ´ 50 nm to 100 nm ´ 100 nm. We found that cell walls exhibited higher elemental concentrations than vacuoles. Plants exposed to salt stress showed dramatic accumulation of Na⁺ and Cl- in the transport tissues, and reached levels similar to those applied in the external solution (300 mM). The advantage of TEM-EDX mapping was the high-spatial-resolution achieved for imaging elemental distributions in a particular area with simultaneous quantitative analyses of multiple target elements.

14.
PLoS One ; 8(8): e72126, 2013.
Article in English | MEDLINE | ID: mdl-23977227

ABSTRACT

Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.


Subject(s)
Anion Transport Proteins/genetics , Plant Proteins/genetics , Populus/genetics , Anion Transport Proteins/metabolism , Cluster Analysis , Gene Expression Regulation, Plant , Multigene Family , Nitrate Transporters , Organ Specificity , Phylogeny , Plant Bark/genetics , Plant Bark/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Populus/metabolism , Promoter Regions, Genetic , Transcriptome , Wood/genetics , Wood/metabolism
15.
Mol Plant Microbe Interact ; 26(8): 850-60, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23594348

ABSTRACT

Verticillium longisporum is a vascular pathogen that infects the Brassicaceae host plants Arabidopsis thaliana and Brassica napus. The soilborne fungus enters the plant via the roots and colonizes the xylem of roots, stems, and leaves. During late stages of infections, Verticillium spp. spread into senescing tissue and switch from biotrophic to a necrotrophic life style. Typical symptoms of V. longisporum-induced disease are stunted growth and leaf chlorosis. Expression analyses of the senescence marker genes SENESCENCE-ASSOCIATED GENE12, SENESCENCE-ASSOCIATED GENE13, and WRKY53 revealed that the observed chlorosis is a consequence of premature senescence triggered by Verticillium infection. Our analyses show that, concomitant with the development of chlorosis, levels of trans-zeatin decrease in infected plants. Potentially, induction of cytokinin oxidase/dehydrogenase expression by Verticillium infection contributes to the observed decreases in cytokinin levels. Stabilization of Arabidopsis cytokinin levels by both pharmacological and genetic approaches inhibits Verticillium proliferation and coincides with reduced disease symptom development. In summary, our results indicate that V. longisporum triggers premature plant senescence for efficient host plant colonization.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Cytokinins/metabolism , Gene Expression Regulation, Plant/physiology , Plant Diseases/microbiology , Verticillium/physiology , Adenine/analogs & derivatives , Adenine/pharmacology , Cytokinins/genetics , DNA, Fungal/isolation & purification , DNA, Fungal/metabolism , Gene Expression Regulation, Plant/drug effects , Time Factors
16.
Plant Physiol ; 162(1): 424-39, 2013 May.
Article in English | MEDLINE | ID: mdl-23530184

ABSTRACT

Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation.


Subject(s)
Cadmium/metabolism , Plant Bark/genetics , Plant Proteins/genetics , Populus/genetics , Transcriptome , Adaptation, Physiological , Antioxidants/metabolism , Cadmium/analysis , Cadmium/pharmacology , Carbohydrate Metabolism , Electron Probe Microanalysis , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Homeostasis , Nitrogen/metabolism , Oligonucleotide Array Sequence Analysis , Organ Specificity , Oxidative Stress , Phenols/metabolism , Photosynthesis/drug effects , Plant Bark/drug effects , Plant Bark/physiology , Plant Bark/ultrastructure , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/ultrastructure , Populus/drug effects , Populus/physiology , Populus/ultrastructure , RNA, Messenger/genetics , RNA, Plant/genetics , Stress, Physiological , Sulfur/metabolism
17.
Plant Cell ; 24(9): 3823-37, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23023171

ABSTRACT

The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant-fungus pathosystem has conditionally mutualistic features.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Brassica napus/physiology , Plant Diseases/microbiology , Verticillium/physiology , Xylem/physiology , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Brassica napus/cytology , Brassica napus/genetics , Brassica napus/microbiology , Cell Differentiation , Droughts , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Organ Specificity , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology , Plant Vascular Bundle/cytology , Plant Vascular Bundle/genetics , Plant Vascular Bundle/microbiology , Plant Vascular Bundle/physiology , Plants, Genetically Modified , Recombinant Fusion Proteins , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism , Xylem/cytology , Xylem/genetics , Xylem/microbiology
18.
J Exp Bot ; 63(17): 6173-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23028021

ABSTRACT

To investigate how N-fertilization affects the growth, carbon and nitrogen (N) physiology, and wood properties of poplars with contrasting growth characteristics, slow-growing (Populus popularis, Pp) and fast-growing (P. alba×P. glandulosa, Pg) poplar saplings were exposed to different N levels. Above-ground biomass, leaf area, photosynthetic rates (A), instantaneous photosynthetic nitrogen use efficiency (PNUE (i)), chlorophyll and foliar sugar concentrations were higher in Pg than in Pp. Foliar nitrate reductase (NR) activities and root glutamate synthase (GOGAT) activities were higher in Pg than in Pp as were the N amount and NUE of new shoots. Lignin contents and calorific values of Pg wood were less than that of Pp wood. N-fertilization reduced root biomass of Pg more than of Pp, but increased leaf biomass, leaf area, A, and PNUE(i) of Pg more than of Pp. Among 13 genes involved in the transport of ammonium or nitrate or in N assimilation, transcripts showed more pronounced changes to N-fertilization in Pg than in Pp. Increases in NR activities and N contents due to N-fertilization were larger in Pg than in Pp. In both species, N-fertilization resulted in lower calorific values as well as shorter and wider vessel elements/fibres. These results suggest that growth, carbon and N physiology, and wood properties are more sensitive to increasing N availability in fast-growing poplars than in slow-growing ones, which is probably due to prioritized resource allocation to the leaves and accelerated N physiological processes in fast-growing poplars under higher N levels.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Populus/physiology , Wood/growth & development , Biological Transport , Biomass , Glutamate Synthase/metabolism , Lignin/analysis , Nitrate Reductase/metabolism , Nitrates/metabolism , Photosynthesis/physiology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Roots/ultrastructure , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/physiology , Plant Shoots/ultrastructure , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/physiology , Plant Stems/ultrastructure , Plant Transpiration/physiology , Populus/genetics , Populus/growth & development , Populus/ultrastructure , Quaternary Ammonium Compounds/metabolism , Soil , Species Specificity , Xylem/genetics , Xylem/growth & development , Xylem/physiology , Xylem/ultrastructure
20.
New Phytol ; 194(1): 129-141, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22126133

ABSTRACT

• Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition.


Subject(s)
Populus/drug effects , Populus/physiology , Pressure , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Wood/drug effects , Wood/physiology , Blotting, Northern , Crosses, Genetic , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Hydrogen-Ion Concentration/drug effects , Mucoproteins/genetics , Mucoproteins/metabolism , Osmosis/drug effects , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regulon/genetics , Sodium/metabolism , Species Specificity , Stress, Physiological/genetics , Wood/anatomy & histology , Xylem/anatomy & histology , Xylem/drug effects , Xylem/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...