Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 892: 164364, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37257590

ABSTRACT

This study investigated the occurrence and potential sources of residues of drugs of abuse in an urban aquifer beneath the City of Ljubljana using water analysis and a solute transport model designed to predict nitrogen distribution. Samples were collected from three sources: 28 wastewater samples (24-h composites), 4 aquifer-recharging river samples (grab), and 22 groundwater samples. The samples were analysed for residues of commonly (ab)used licit drugs (nicotine and alcohol), medications of abuse (morphine, methadone, codeine, and ketamine), and illicit drugs (tetrahydrocannabinol - THC, cocaine, amphetamines, and heroin) using liquid-liquid (alcohol residue) and solid-phase extraction, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, we used solute transport modelling to predict the spatial distribution of drug residues in the aquifer and their potential sources. Nicotine (up to 45,7 ng/L), cotinine (up to 5.86 ng/L), trans-3'-hydroxycotinine (up to 0.528 ng/L) and benzoylecgonine (up to 0.572 ng/L) were the most commonly detected drug residues in groundwater, followed by cocaine (

Subject(s)
Cocaine , Water Pollutants, Chemical , Chromatography, Liquid/methods , Nicotine/analysis , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry , Cocaine/analysis , Methadone/analysis , Water , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 807(Pt 1): 150811, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34626637

ABSTRACT

Groundwater represents the most important available freshwater reserves and is of critical importance to global water and food security. Old environmental burdens that have led to the spread of contaminants in groundwater limit its use, thus interventions to mitigate contamination must often be carried out to ensure a safe drinking water supply. This study presents the optimization of well field management designs to reduce the desethylatrazine (DEA) concentration in the deep wells of the Brest Water Works (Central Slovenia). It investigates artificial recharge by injection wells using water from the nearby river and elaborates five well field management scenarios prioritizing different objectives. A multi-objective simulation-optimization framework was developed. A transient groundwater flow and solute transport model was applied to simulate the effects of the proposed recharge and pumping regimes. The shuffled complex evolution method was used to identify optimal values of well field management variables (location of injection well(s), minimum required injection rate, maximum pumping rate from production well) in the proposed scenarios. Model simulations showed that optimized well field management designs can significantly reduce DEA concentration in production wells (below 0.05 µg/L), assure compliance with water quality standards with (26%) reduced injection rate, and, with the implementation of two injection wells, achieve lower DEA concentration and higher pumping rate (up to 27 L/s). The optimization solutions depend on the defined well field management priorities and reveal a trade-off between the objectives (reduction of DEA concentration, increase of pumping rate, and reduction of injection rate). The impact of management variables on mitigation efficiency is not uniform and largely depends on the location of the injection well(s), which increases the complexity of mitigation design. The study has shown that the presented approach can be efficiently used for finding optimal mitigation designs and supporting water managers with information for planning mitigation measures.


Subject(s)
Groundwater , Algorithms , Water Quality , Water Supply , Water Wells
SELECTION OF CITATIONS
SEARCH DETAIL
...