Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Ecol Resour ; 24(2): e13892, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966172

ABSTRACT

Anthropogenic hybridization, or higher and non-natural rates of gene flow directly and indirectly induced by human activities, is considered a significant threat to biodiversity. The primary concern for conservation is the potential for genomic extinction and loss of adaptiveness for native species due to the extensive introgression of non-native genes. To alleviate or reverse trends for such scenarios requires the direct integration of genomic data within a model framework for effective management. Towards this end, we developed the simRestore R program as a decision-making tool that integrates ecological and genomic information to simulate ancestry outcomes from optimized conservation strategies. In short, the program optimizes supplementation and removal strategies across generations until a set native genetic threshold is reached within the studied population. Importantly, in addition to helping with initial decision-making, simulations can be updated with the outcomes of ongoing efforts, allowing for the adaptive management of populations. After demonstrating functionality, we apply and optimize among actionable management strategies for the endangered Hawaiian duck for which the current primary threat is genetic extinction through ongoing anthropogenic hybridization with feral mallards. Simulations demonstrate that supplemental and removal efforts can be strategically tailored to move the genetic ancestry of Hawaii's hybrid populations towards Hawaiian duck without the need to completely start over. Further, we discuss ecological parameter sensitivity, including which factors are most important to ensure genetic outcomes (i.e. number of offspring). Finally, to facilitate use, the program is also available online as a Shiny Web application.


Subject(s)
Biodiversity , Genome , Animals , Humans , Genomics , Hybridization, Genetic , Ducks/genetics , Conservation of Natural Resources
2.
PLoS Comput Biol ; 18(12): e1010076, 2022 12.
Article in English | MEDLINE | ID: mdl-36473017

ABSTRACT

Oncolytic virotherapy is a promising form of cancer treatment that uses native or genetically engineered viruses to target, infect and kill cancer cells. Unfortunately, this form of therapy is not effective in a substantial proportion of cancer patients, partly due to the occurrence of infection-resistant tumour cells. To shed new light on the mechanisms underlying therapeutic failure and to discover strategies that improve therapeutic efficacy we designed a cell-based model of viral infection. The model allows us to investigate the dynamics of infection-sensitive and infection-resistant cells in tumour tissue in presence of the virus. To reflect the importance of the spatial configuration of the tumour on the efficacy of virotherapy, we compare three variants of the model: two 2D models of a monolayer of tumour cells and a 3D model. In all model variants, we systematically investigate how the therapeutic outcome is affected by the properties of the virus (e.g. the rate of viral spread), the tumour (e.g. production rate of resistant cells, cost of resistance), the healthy stromal cells (e.g. degree of resistance to the virus) and the timing of treatment. We find that various therapeutic outcomes are possible when resistant cancer cells arise at low frequency in the tumour. These outcomes depend in an intricate but predictable way on the death rate of infected cells, where faster death leads to rapid virus clearance and cancer persistence. Our simulations reveal three different causes of therapy failure: rapid clearance of the virus, rapid selection of resistant cancer cells, and a low rate of viral spread due to the presence of infection-resistant healthy cells. Our models suggest that improved therapeutic efficacy can be achieved by sensitizing healthy stromal cells to infection, although this remedy has to be weighed against the toxicity induced in the healthy tissue.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Neoplasms/therapy , Neoplasms/pathology
3.
Nat Commun ; 13(1): 7232, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36433975

ABSTRACT

Division of labour occurs in a broad range of organisms. Yet, how division of labour can emerge in the absence of pre-existing interindividual differences is poorly understood. Using a simple but realistic model, we show that in a group of initially identical individuals, division of labour emerges spontaneously if returning foragers share part of their resources with other group members. In the absence of resource sharing, individuals follow an activity schedule of alternating between foraging and other tasks. If non-foraging individuals are fed by other individuals, their alternating activity schedule becomes interrupted, leading to task specialisation and the emergence of division of labour. Furthermore, nutritional differences between individuals reinforce division of labour. Such differences can be caused by increased metabolic rates during foraging or by dominance interactions during resource sharing. Our model proposes a plausible mechanism for the self-organised emergence of division of labour in animal groups of initially identical individuals. This mechanism could also play a role for the emergence of division of labour during the major evolutionary transitions to eusociality and multicellularity.


Subject(s)
Biological Evolution , Labor, Obstetric , Animals , Female , Pregnancy
4.
Syst Biol ; 71(5): 1244-1254, 2022 08 10.
Article in English | MEDLINE | ID: mdl-34672354

ABSTRACT

Although molecular mechanisms associated with the generation of mutations are highly conserved across taxa, there is widespread variation in mutation rates between evolutionary lineages. When phylogenies are reconstructed based on nucleotide sequences, such variation is typically accounted for by the assumption of a relaxed molecular clock, which is a statistical distribution of mutation rates without much underlying biological mechanism. Here, we propose that variation in accumulated mutations may be partly explained by an elevated mutation rate during speciation. Using simulations, we show how shifting mutations from branches to speciation events impacts inference of branching times in phylogenetic reconstruction. Furthermore, the resulting nucleotide alignments are better described by a relaxed than by a strict molecular clock. Thus, elevated mutation rates during speciation potentially explain part of the variation in substitution rates that is observed across the tree of life. [Molecular clock; phylogenetic reconstruction; speciation; substitution rate variation.].


Subject(s)
Evolution, Molecular , Nucleotides , Biological Evolution , Models, Genetic , Mutation , Phylogeny
5.
Mol Ecol Resour ; 22(3): 908-926, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34599646

ABSTRACT

After admixture, recombination breaks down genomic blocks of contiguous ancestry. The breakdown of these blocks forms a new "molecular clock" that ticks at a much faster rate than the mutation clock, enabling accurate dating of admixture events in the recent past. However, existing theory on the breakdown of these blocks, or the accumulation of delineations between blocks, so-called "junctions", has mostly been limited to using regularly spaced markers on phased data. Here, we present an extension to the theory of junctions using the ancestral recombination graph that describes the expected number of junctions for any distribution of markers along the genome. Furthermore, we provide a new framework to infer the time since admixture using unphased data. We demonstrate both the phased and unphased methods on simulated data and show that our new extensions have improved accuracy with respect to previous methods, especially for smaller population sizes and more ancient admixture times. Lastly, we demonstrate the applicability of our method on three empirical data sets, including labcrosses of yeast (Saccharomyces cerevisae) and two case studies of hybridization in swordtail fish and Populus trees.


Subject(s)
Genetics, Population , Genome , Animals , Genomics , Hybridization, Genetic
6.
Mol Biol Evol ; 37(1): 167-182, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31518427

ABSTRACT

Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype-environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.


Subject(s)
Genetic Fitness , Hybridization, Genetic , Saccharomyces/genetics , Stress, Physiological , Chromosomes, Fungal , Gene-Environment Interaction
7.
Ecol Evol ; 9(6): 3470-3490, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30962906

ABSTRACT

Resolving evolutionary relationships and establishing population structure depends on molecular diagnosability that is often limited for closely related taxa. Here, we use 3,200 ddRAD-seq loci across 290 mallards, American black ducks, and putative hybrids to establish population structure and estimate hybridization rates. We test between traditional assignment probability and accumulated recombination events based analyses to assign hybrids to generational classes. For hybrid identification, we report the distribution of recombination events complements ADMIXTURE simulation by extending resolution past F4 hybrid status; however, caution against hybrid assignment based on accumulated recombination events due to an inability to resolve F1 hybrids. Nevertheless, both analyses suggest that there are relatively few backcrossed stages before a lineage's hybrid ancestry is lost and the offspring are effectively parental again. We conclude that despite high rates of observed interspecific hybridization between mallards and black ducks in the middle part of the 20th century, our results do not support the predicted hybrid swarm. Conversely, we report that mallard samples genetically assigned to western and non-western clusters. We indicate that these non-western mallards likely originated from game-farm stock, suggesting landscape level gene flow between domestic and wild conspecifics.

8.
Evolution ; 72(4): 735-750, 2018 04.
Article in English | MEDLINE | ID: mdl-29411878

ABSTRACT

When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every generation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of recombination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties of empirical data and can serve to study the genomic patterns following admixture.


Subject(s)
Genome , Heredity , Hybridization, Genetic , Recombination, Genetic , Chromosomes , Models, Genetic
9.
Yeast ; 35(1): 85-98, 2018 01.
Article in English | MEDLINE | ID: mdl-28967670

ABSTRACT

Errors in meiosis can be important postzygotic barriers between different species. In Saccharomyces hybrids, chromosomal missegregation during meiosis I produces gametes with missing or extra chromosomes. Gametes with missing chromosomes are inviable, but we do not understand how extra chromosomes (disomies) influence hybrid gamete inviability. We designed a model predicting rates of missegregation in interspecific hybrid meioses assuming several different mechanisms of disomy tolerance, and compared predictions from the model with observations of sterility in hybrids between Saccharomyces yeast species. Sterility observations were consistent with the hypothesis that chromosomal missegregation causes hybrid sterility, and the model indicated that missegregation probabilities of 13-50% per chromosome can cause observed values of 90-99% hybrid sterility regardless of how cells tolerate disomies. Missing chromosomes in gametes are responsible for most infertility, but disomies may kill as many as 11% of the gametes produced by hybrids between Saccharomyces cerevisiae and Saccharomyces paradoxus. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Aneuploidy , Chromosome Segregation/genetics , Chromosomes, Fungal/genetics , Hybridization, Genetic , Meiosis , Models, Genetic , Saccharomyces/genetics , Saccharomyces/physiology
10.
Ecol Evol ; 7(4): 1057-1067, 2017 02.
Article in English | MEDLINE | ID: mdl-28303177

ABSTRACT

The cichlid family features some of the most spectacular examples of adaptive radiation. Evolutionary studies have highlighted the importance of both trophic adaptation and sexual selection in cichlid speciation. However, it is poorly understood what processes drive the composition and diversity of local cichlid species assemblages on relatively short, ecological timescales. Here, we investigate the relative importance of niche-based and neutral processes in determining the composition and diversity of cichlid communities inhabiting various environmental conditions in the littoral zone of Lake Tanganyika, Zambia. We collected data on cichlid abundance, morphometrics, and local environments. We analyzed relationships between mean trait values, community composition, and environmental variation, and used a recently developed modeling technique (STEPCAM) to estimate the contributions of niche-based and neutral processes to community assembly. Contrary to our expectations, our results show that stochastic processes, and not niche-based processes, were responsible for the majority of cichlid community assembly. We also found that the relative importance of niche-based and neutral processes was constant across environments. However, we found significant relationships between environmental variation, community trait means, and community composition. These relationships were caused by niche-based processes, as they disappeared in simulated, purely neutrally assembled communities. Importantly, these results can potentially reconcile seemingly contrasting findings in the literature about the importance of either niche-based or neutral-based processes in community assembly, as we show that significant trait relationships can already be found in nearly (but not completely) neutrally assembled communities; that is, even a small deviation from neutrality can have major effects on community patterns.

11.
J Theor Biol ; 374: 94-106, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25816742

ABSTRACT

Over the past decade, the neutral theory of biodiversity has stirred up community assembly theory considerably by suggesting that stochasticity in the form of ecological drift is an important factor determining community composition and community turnover. The neutral theory assumes that all species within a community are functionally equivalent (the neutrality assumption), and therefore applies best to communities of trophically similar species. Evidently, trophically similar species may still differ in dispersal ability, and therefore may not be completely functionally equivalent. Here we present a new sampling formula that takes into account the partitioning of a community into two guilds that differ in immigration rate. We show that, using this sampling formula, we can accurately detect a subdivision into guilds from species abundance distributions, given ecological data about dispersal ability. We apply our sampling formula to tropical tree data from Barro Colorado Island, Panama. Tropical trees are divided depending on their dispersal mode, where biotically dispersed trees are grouped as one guild, and abiotically dispersed trees represent another guild. We find that breaking neutrality by adding guild structure to the neutral model significantly improves the fit to data and provides a better understanding of community assembly on BCI. Our findings are thus an important step towards an integration of neutral and niche theory.


Subject(s)
Biodiversity , Models, Biological , Plant Dispersal , Trees/physiology , Ecology/methods , Ecosystem , Likelihood Functions , Panama , Population Dynamics , Probability , Reproducibility of Results , Species Specificity , Tropical Climate
12.
Theor Popul Biol ; 101: 31-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25724405

ABSTRACT

Body size of vertebrate herbivores is strongly linked to other life history traits, most notably (1) tolerance of low quality forage and (2) vulnerability to predation, which both impact the composition and dynamics of natural communities. However, no study has thus far explored how the combination of these two body-size related traits affects the long-term composition and dynamics of the herbivore and plant communities. We made a simple model of ordinary differential equations and simulated a grassland system with three herbivore species (small, medium, large) and two predator species (small, large) to investigate how the combination of low-quality tolerance and predation-vulnerability structure the herbivore and plant community. We found that facilitation and competition between different-sized herbivores and predation by especially small predators stimulate coexistence among herbivore species. Furthermore, the interaction between different-sized herbivores and predators generated cyclical succession in the plant community, i.e. alternating periods of short vegetation dominated by high-quality plants, with periods of tall vegetation dominated by low-quality plants. Our results suggest that cyclical succession in plant communities is more likely to occur when a predator predominantly preys on small herbivore species. Large predators also play an important role, as their addition relaxed the set of conditions under which cyclical succession occurred. Consequently, our model predictions suggest that a diverse predator community plays an important role in the long-term dynamics and maintenance of diversity in both the herbivore and plant community.


Subject(s)
Ecosystem , Herbivory , Models, Biological , Plants , Predatory Behavior , Animals , Bison , Body Size , Deer , Europe , Food Chain , Foxes , Population Dynamics , Wolves
13.
Interface Focus ; 2(2): 170-9, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22419989

ABSTRACT

One of the most striking patterns observed among animals is that smaller-bodied taxa are generally much more diverse than larger-bodied taxa. This observation seems to be explained by the mere fact that smaller-bodied taxa tend to have an older evolutionary origin and have therefore had more time to diversify. A few studies, based on the prevailing null model of diversification (i.e. the stochastic constant-rate birth-death model), have suggested that this is indeed the correct explanation, and body-size dependence of speciation and extinction rates does not play a role. However, there are several potential shortcomings to these studies: a suboptimal statistical procedure and a relatively narrow range of body sizes in the analysed data. Here, we present a more coherent statistical approach, maximizing the likelihood of the constant-rate birth-death model with allometric scaling of speciation and extinction rates, given data on extant diversity, clade age and average body size in each clade. We applied our method to a dataset compiled from the literature that includes a wide range of Metazoan taxa (range from midges to elephants). We find that the higher diversity among small animals is indeed, partly, caused by higher clade age. However, it is also partly caused by the body-size dependence of speciation and extinction rates. We find that both the speciation rate and extinction rate decrease with body size such that the net diversification rate is close to 0. Even more interestingly, the allometric scaling exponent of speciation and extinction rates is approximately -0.25, which implies that the per generation speciation and extinction rates are independent of body size. This suggests that the observed relationship between diversity and body size pattern can be explained by clade age alone, but only if clade age is measured in generations rather than years. Thus, we argue that the most parsimonious explanation for the observation that smaller-bodied taxa are more diverse is that their evolutionary clock ticks faster.

SELECTION OF CITATIONS
SEARCH DETAIL
...