Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0042324, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864648

ABSTRACT

Clorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways. IMPORTANCE: The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.

2.
Proteomics ; 24(10): e2300390, 2024 May.
Article in English | MEDLINE | ID: mdl-38158717

ABSTRACT

Pseudopteroxazole (Ptx) and the pseudopterosins are marine natural products with promising antibacterial potential. While Ptx has attracted interest for its antimycobacterial activity, pseudopterosins are active against several clinically relevant pathogens. Both compound classes exhibit low cytotoxicity and accessibility to targeted synthesis, yet their antibacterial mechanisms remain elusive. In this study, we investigated the modes of action of Ptx and pseudopterosin G (PsG) in Bacillus subtilis employing an unbiased approach that combines gel-based proteomics with a mathematical similarity analysis of response profiles. Proteomic responses to sublethal concentrations of Ptx and PsG were compared to a library of antibiotic stress response profiles revealing that both induce a stress response characteristic for agents targeting the bacterial cell envelope by interfering with membrane-bound steps of cell wall biosynthesis. Microscopy-based assays confirmed that both compounds compromise the integrity of the bacterial cell wall without disrupting the membrane potential. Furthermore, LC-MSE analysis showed that the greater potency of PsG against B. subtilis, reflected in a lower MIC and a more pronounced proteomic response, may be rooted in a more effective association with and penetration of B. subtilis cells. We conclude that Ptx and PsG target the integrity of the gram-positive cell wall.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Diterpenes , Proteomics , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Diterpenes/pharmacology , Diterpenes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Proteomics/methods , Cell Wall/drug effects , Cell Wall/metabolism , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Glycosides
3.
Article in English | MEDLINE | ID: mdl-33046497

ABSTRACT

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Subject(s)
Anti-Bacterial Agents , Proteomics , Anti-Bacterial Agents/pharmacology , Bacillus subtilis , Bacterial Proteins/genetics , Tetracyclines
SELECTION OF CITATIONS
SEARCH DETAIL
...