Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 24(1): 39, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849803

ABSTRACT

BACKGROUND: Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, and various skin diseases. However, optimizing the extraction of valuable secondary metabolites of M. azedarach using alternative extraction methods has not been investigated. This research aims to develop an effective, fast, and environmentally friendly extraction method using Ultrasound-assisted extraction, methanol and temperature to optimize the extraction of two secondary metabolites, lupeol and stigmasterol, from young roots of M. azedarach using the response surface methodology. METHODS: Box-behnken design was applied to optimize different factors (solvent, temperature, and ultrasonication time). The amounts of lupeol and stigmasterol in the root of M. azedarach were detected by the HPLC-DAD. The required time for the analysis of each sample by the HPLC-DAD system was considered to be 8 min. RESULTS: The results indicated that the highest amount of lupeol (7.82 mg/g DW) and stigmasterol (6.76 mg/g DW) was obtained using 50% methanol at 45 °C and ultrasonication for 30 min, and 50% methanol in 35 °C, and ultrasonication for 30 min, respectively. Using the response surface methodology, the predicted conditions for lupeol and stigmasterol from root of M. azedarach were as follows; lupeol: 100% methanol, temperature 45 °C and ultrasonication time 40 min (14.540 mg/g DW) and stigmasterol 43.75% methanol, temperature 34.4 °C and ultrasonication time 25.3 min (5.832 mg/g DW). CONCLUSIONS: The results showed that the amount of secondary metabolites lupeol and stigmasterol in the root of M. azedarach could be improved by optimizing the extraction process utilizing response surface methodology.


Subject(s)
Melia azedarach , Pentacyclic Triterpenes , Stigmasterol , Pentacyclic Triterpenes/metabolism , Stigmasterol/metabolism , Stigmasterol/isolation & purification , Stigmasterol/chemistry , Melia azedarach/chemistry , Chromatography, High Pressure Liquid , Plant Roots/chemistry , Plant Roots/metabolism , Plant Extracts/chemistry , Temperature , Solvents/chemistry , Lupanes
2.
Mol Biol Rep ; 39(4): 3683-93, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21732058

ABSTRACT

Thioredoxins (Trxs) are small ubiquitous proteins which play a regulatory role in a variety of cellular processes. In contrast to other organisms, plants have a great number of Trx types, consisting of six well-defined groups: f, m, x, and y in chloroplasts, o in mitochondria, and h mainly in cytosol. A full-length cDNA, designated VvCxxS2, encoding Trx h polypeptide was isolated and cloned from grape (Vitis vinifera L. cv. Askari) berries organ by reverse transcription polymerase chain reaction (RT-PCR). The cDNA was 381 bp nucleotides in length with a deduced amino acid of 126 residues, possessing a WCIPS active site, which belongs to the subgroup III of h-type Trxs based on phylogenetic analysis. The calculated molecular mass and the predicted isoelectric point of the deduced polypeptide are 14.25 kDa and 4.68, respectively. Nucleotide sequence analysis of genomic DNA fragment of VvCxxS2 gene revealed that this gene possesses two introns at positions identical to the previously sequenced Trx h genes. A modeling analysis indicated that VvCxxS2 shares a common structure with other Trxs, and is preferably reduced by Grx rather than NADPH-dependent thioredoxin reductase (NTR). The deduced protein sequence showed a high similarity to Trx h from other plants, in particular from castor bean (Ricinus communis), Betula pendula and sweet orange (Citrus sinensis). Semiquantitative RT-PCR experiments indicated that the transcripts of VvCxxS2 gene are present in all plant organs and different developmental stages. In addition, the higher expression of the VvCxxS2 gene was observed in berry organ as compared to the other organs.


Subject(s)
Genes, Plant/genetics , Plant Proteins/genetics , Sequence Analysis, DNA , Thioredoxin h/genetics , Vitis/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Conserved Sequence/genetics , DNA, Complementary/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Humans , Introns/genetics , Models, Molecular , Molecular Sequence Data , Organ Specificity/genetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Thioredoxin h/chemistry , Thioredoxin h/metabolism , Thioredoxin-Disulfide Reductase/metabolism
3.
Mol Biotechnol ; 49(2): 129-37, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21302150

ABSTRACT

Isolation of high quality nucleic acids from plant tissues rich in polysaccharides and polyphenols is often difficult. The presence of these substances can affect the quality and/or quantity of the nucleic acids isolated. Here, we describe a rapid and efficient nucleic acids extraction protocol that in contrast to other methods tested, effectively purify high quality nucleic acids from plant tissues rich in polysaccharides and polyphenolic compounds such as different grape tissues and fruit tissue of fruit trees. The nucleic acids isolated with this protocol were successfully used for many functional genomic based experiments including polymerase chain reaction, reverse transcription polymerase chain reaction (RT-PCR), cloning, and semiquantitative RT-PCR.


Subject(s)
DNA, Plant/isolation & purification , Fruit/chemistry , RNA, Plant/isolation & purification , Rosaceae/chemistry , Cloning, Molecular , DNA, Plant/chemistry , Electrophoresis, Agar Gel , Musa/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry , Polyphenols , Polysaccharides , RNA, Plant/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Vitis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...