Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nanoscale ; 9(7): 2505-2513, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28150830

ABSTRACT

We report a systematic investigation on the temperature dependence of fluorescence decay dynamics of infrared emitting colloidal Ag2S nanocrystals (NCs) with different surface coatings. The drastic lifetime reduction in the biological temperature range (20-50 °C) makes Ag2S NCs outstanding candidates for high sensitivity subcutaneous lifetime-based thermal sensing in the second biological window (1000-1400 nm). Indeed, the lifetime thermal sensitivity of Ag2S NCs has been found to be as large as 3-4% °C-1 at an operating wavelength of 1250 nm. Their application for lifetime-based luminescence nanothermometry has been demonstrated through simple ex vivo experiments specially designed to elucidate the magnitude of subcutaneous thermal gradients. Experimental data were found to be in excellent agreement with numerical simulations.

2.
J Mater Chem B ; 5(46): 9085-9101, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-32264590

ABSTRACT

Since the 70's, when Arthur Ashkin and coworkers demonstrated that optical forces could displace and levitate microsized particles, optical trapping has seen a steady stream of developments and applications, particularly in the biological field. Since that demonstration, optical trapping has been especially exploited as a powerful tool for non-invasive sensitive measurements. The recent development of synthesis routes has further expanded the possibilities of optical trapping in the area of biosensing where new multifunctional particles are used as a single probe. The synergy between the development of new materials and experimental techniques has led to the appearance of numerous studies in which novel biosensing applications are demonstrated. The design of new materials and optical systems to face new challenges makes it necessary to have a clear idea about the latest developments achieved in the field. In this work, we summarize recent experimental advances in biosensing achieved by optical manipulation of micro- and nanoparticles providing a critical review on the state of the art and future prospects.

3.
Nano Lett ; 15(8): 5068-74, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26120948

ABSTRACT

We report on stable, long-term immobilization and localization of a single colloidal Er(3+)/Yb(3+) codoped upconverting fluorescent nanoparticle (UCNP) by optical trapping with a single infrared laser beam. Contrary to expectations, the single UCNP emission differs from that generated by an assembly of UCNPs. The experimental data reveal that the differences can be explained in terms of modulations caused by radiation-trapping, a phenomenon not considered before but that this work reveals to be of great relevance.

4.
Opt Express ; 22(16): 19735-47, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25321056

ABSTRACT

We report on the improvement of the infrared optical trapping efficiency of dielectric microspheres by the controlled adhesion of gold nanorods to their surface. When trapping wavelength was equal to the surface plasmon resonance wavelength of the gold nanorods (808 nm), a 7 times improvement in the optical force acting on the microspheres was obtained. Such a gold nanorod assisted enhancement of the optical trapping efficiency enabled the intracellular manipulation of the decorated dielectric microsphere by using a low power (22 mW) infrared optical trap.


Subject(s)
Gold/chemistry , Intracellular Space/metabolism , Microspheres , Nanotubes/chemistry , Optical Phenomena , Silicon Dioxide/chemistry , Animals , Cell Line , Cell Survival , Macrophages/metabolism , Mice , Nanotubes/ultrastructure , Optical Imaging , Optical Tweezers
5.
Opt Express ; 22(20): 23938-54, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25321971

ABSTRACT

Flow effects on the thermal loading in different optofluidic systems (optical trap and various microfluidic channels) have been systematically explored by using dye-based ratiometric luminescence thermometry. Thermal images obtained by fluorescence microscopy demonstrate that the flow rate plays a key role in determining both the magnitude of the laser-induced temperature increment and its spatial distribution. Numerical simulations were performed in the case of the optical trap. A good agreement between the experimental results and those predicted by mathematical modelling was observed. It has also been found that the dynamics of thermal loading is strongly influenced by the presence of fluid flow.

6.
Nanoscale ; 6(16): 9727-33, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24995540

ABSTRACT

Non-contact thermometry is essential in biomedical studies requiring thermal sensing and imaging with high thermal and spatial resolutions. In this work, we report the potential use of Er:Yb:NaYF4 and Er:Yb:NaY2F5O up-conversion nanoparticles as thermal sensors by means of lifetime based luminescent thermometry. We demonstrate how Er:Yb:NaY2F5O nanocrystals present a higher thermal sensitivity than the Er:Yb:NaYF4 ones and that their lifetime thermal coefficient is comparable to those corresponding to other nano-sized luminescent systems already used for high resolution lifetime fluorescence thermal sensing. We evaluate the potential use of Er:Yb:NaY2F5O nanoparticles as lifetime based thermal probes by providing the first experimental evidence on sub-tissue lifetime fluorescence thermal sensing by using up-conversion nanoparticles in an ex vivo experiment.


Subject(s)
Fluorescent Dyes/chemistry , Fluorides/chemistry , Metal Nanoparticles/chemistry , Metals, Rare Earth/chemistry , Particle Size , Temperature
7.
Nanoscale ; 6(16): 9494-530, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25030381

ABSTRACT

The current status of the use of nanoparticles for photothermal treatments is reviewed in detail. The different families of heating nanoparticles are described paying special attention to the physical mechanisms at the root of the light-to-heat conversion processes. The heating efficiencies and spectral working ranges are listed and compared. The most important results obtained in both in vivo and in vitro nanoparticle assisted photothermal treatments are summarized. The advantages and disadvantages of the different heating nanoparticles are discussed.


Subject(s)
Nanoparticles , Nanotechnology , Phototherapy , Animals , Cell Line , Humans , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use
8.
Opt Lett ; 38(24): 5248-51, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24322229

ABSTRACT

In this Letter, we report on the successful fabrication of low loss, high refractive index contrast waveguides via ion migration upon femtosecond laser writing in phosphate glass. Waveguides were produced in two different phosphate glass compositions with high and low La(2)O(3) content. In the La-rich glass, a large refractive index increase in the guiding region was observed due to the incoming migration of La accompanied by the out-diffusion of K. The much smaller refractive index change in the La-less glass is caused by rearrangements of the glass structure. These results confirm the feasibility of adapting the glass composition for enabling the laser writing of high refractive index contrast structures via spatially selective modification of the glass composition.

9.
Nanoscale ; 5(24): 12192-9, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24132346

ABSTRACT

We report on the first experimental observation of stable optical trapping of dielectric NaYF4:Er(3+),Yb(3+) upconverting fluorescent nanoparticles (~26 nm in diameter) using a continuous wave 980 nm single-beam laser. The laser serves both to optically trap and to excite visible luminescence from the nanoparticles. Sequential loading of individual nanoparticles into the trap is observed from the analysis of the emitted luminescence. We demonstrate that the trapping strength and the number of individual nanoparticles trapped are dictated by both the laser power and nanoparticle density. The possible contribution of thermal effects has been investigated by performing trapping experiment in both heavy water and into distilled water. For the case of heavy water, thermal gradients are negligible and optical forces dominate the trap loading behaviour. The results provide a promising path towards real three dimensional manipulation of single NaYF4:Er(3+),Yb(3+) nanoparticles for precise fluorescence sensing in biophotonics experiments.

10.
Opt Lett ; 38(17): 3294-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23988938

ABSTRACT

We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

11.
Opt Express ; 21(9): 10667-75, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23669923

ABSTRACT

An intensity enhancement of the green upconversion emission from a codoped Er(3+)-Yb(3+) fluoroindate glass has been obtained by coating the glass surface with silica microspheres (3.8 µm diameter). The microspheres focus an incoming beam (λ ≈ 950 nm) on the surface of the fluoroindate glass. The green emission (λ ≈ 545 nm) of the Er(3+) ions located in the microsphere focus was measured with a microscope in reflection mode, being the peak intensity 4.5 times the emission of the bare substrate. The transversal FWHM of the upconversion spot was experimentally determined by deconvolution with the experimental Point Spread Function of the system, obtaining a value of 309 nm. This value is in good agreement with Finite-Difference Time-Domain simulations taking into account the magnification of the image due to the microsphere.


Subject(s)
Europium/chemistry , Fluorine/chemistry , Glass/chemistry , Lasers , Lenses , Lighting/instrumentation , Models, Chemical , Silicon Dioxide/chemistry , Ytterbium/chemistry , Computer Simulation , Equipment Design , Equipment Failure Analysis , Microspheres , Miniaturization
12.
Small ; 8(17): 2652-8, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22700354

ABSTRACT

The potential use of CdTe quantum dots as luminescence nano-probes for lifetime fluorescence nano-thermometry is demonstrated. The maximum thermal sensitivity achievable is strongly dependent on the quantum dot size. For the smallest sizes (close to 1 nm) the lifetime thermal sensitivity overcomes those of conventional nano-probes used in fluorescence lifetime thermometry.

13.
Opt Lett ; 37(10): 1691-3, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22627539

ABSTRACT

Laser slope efficiencies close to the quantum defect limit and in excess of 78% have been obtained from an ultrafast laser inscribed buried channel waveguide fabricated in a ytterbium-doped bismuthate glass. The simultaneous achievement of low propagation losses and preservation of the fluorescence properties of ytterbium ions is the basis of the outstanding laser performance.

14.
Nanoscale ; 4(1): 298-302, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22071562

ABSTRACT

A new approach to deep tissue imaging is presented based on 8 nm CdTe semiconductor quantum dots (QDs). The characteristic 800 nm emission was found to be efficiently excited via two-photon absorption of 900 nm photons. The fact that both excitation and emission wavelengths lie within the "biological window" allows for high resolution fluorescence imaging at depths close to 2 mm. These penetration depths have been used to obtain the first deep tissue multiphoton excited fluorescence image based on CdTe-QDs. Due to the large thermal sensitivity of CdTe-QDs, one may envisage, in the near future, their use in high resolution deep-tissue thermal imaging.


Subject(s)
Cadmium Compounds/chemistry , Fluorescent Dyes/chemistry , Quantum Dots , Tellurium/chemistry , HeLa Cells , Humans , Particle Size , Photons , Spectroscopy, Near-Infrared
15.
Opt Lett ; 36(17): 3395-7, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21886222

ABSTRACT

A new (to our knowledge) ultrashort laser pulse irradiation regime that allows us to directly modify and increase the refractive index of rare earth doped YAG polycrystalline ceramics has been identified. Single-mode buried channel waveguides in both Ho:YAG and Er:YAG ceramics at the near-IR wavelengths of 1.55 µm and 1.95 µm are demonstrated by fabricating positive square step-index cores. Minimum propagation losses of 1.5 dB cm(-1) at a 1.51 µm wavelength have been preliminarily obtained. Confocal microluminescence mapping reveals that the increased refractive index regions retain the near-IR spectral properties of Er3+ ions in the YAG crystalline matrix.

16.
Opt Lett ; 36(5): 615-7, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21368925

ABSTRACT

Whispering-gallery modes (WGMs) on Nd3+-doped glass microspheres with a radius of ∼15 µm were measured in a modified confocal microscope, where a dual spatial resolution in both excitation and detection zones was possible. As an alternative to the standard excitation mechanism by an evanescent wave, we used an efficient pumping/detecting scheme, focusing a laser in the microsphere and exciting the Nd3+ ions, whose fluorescent emission produces the WGMs. We have also measured the generated WGMs by changing the detection zone, where higher amplitude resonances were found when exciting in the center and detecting at the edge of the microsphere.

17.
Opt Lett ; 35(23): 3898-900, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21124558

ABSTRACT

We report on the microstructuring of Nd:YAG crystals by direct proton-beam writing. Buried channel waveguides have been fabricated with full spatial control by the combined variation of crystal position and proton energy. The fluorescence images of the obtained structures have been used to evaluate the potential application of the fabricated structures for laser gain as well as to elucidate the mechanism at the basis of the refractive index increment induced at the end of the proton path. We have concluded that this increment is very likely a local enhancement in the electronic polarizability caused by nuclear collisions.

18.
Opt Lett ; 35(19): 3276-8, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20890358

ABSTRACT

An Nd:YAG planar waveguide laser has been fabricated by ultra-low-fluence (2×10(12) cm(-2)) swift heavy-ion irradiation (60 MeV Ar(4+) ions). The appearance of the buried waveguiding has been associated with an increased refractive index layer as a consequence of the ion-induced electronic damage. Continuous-wave laser oscillations at 1064.2 nm have been observed from the waveguide under 808 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency close to 26 mW and 5.9%, respectively.

19.
Opt Lett ; 35(7): 916-8, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20364168

ABSTRACT

We report the formation of optical waveguides in the self-Raman Nd:YVO(4) laser crystal by femtosecond laser inscription. The confocal fluorescence and Raman images have revealed that the waveguide is constituted by a locally compressed area in which the original fluorescence and Raman gains of the Nd:YVO(4) system are preserved. Thus the obtained structures emerge as promising candidates for highly efficient self-Raman integrated laser sources.

20.
Opt Lett ; 35(3): 330-2, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20125711

ABSTRACT

We report on femtosecond laser writing of channel waveguides in Nd(3+) ion doped YAG ceramics by multiple inscriptions of damage filaments. Waveguiding between filaments was found to resist annealing temperatures as high as 1500 degrees C. Microluminescence imaging experiments have been carried out to elucidate the potential application of the obtained waveguides as integrated laser sources as well as to elucidate the waveguiding mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...